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We study heat conduction in a 1D chain of particles with longitudinal as well as transverse motions. The
particles are connected by 2D harmonic springs together with bending angle interactions. The problem is
analyzed by mode-coupling theory and compared with molecular dynamics. We find very good, quantitative
agreement for the damping of modes between a full mode-coupling theory and molecular dynamics result, and
a simplified mode-coupling theory gives qualitative description of the damping. The theories predict generi-
cally that thermal conductance diverges asN1/3 as the sizeN increases for systems terminated with heat baths
at the ends. TheN2/5 dependence is also observed in molecular dynamics, which we attribute to crossover
effect.
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I. INTRODUCTION

The problem of heat conduction is a well-studied field.
More than two centuries ago, Joseph Fourier summarized the
behavior of heat conduction by the law that bears his name.
This law describes phenomenologically that the heat current
is proportional to the temperature gradient. The detailed ato-
mistic theories of heat conduction appeared only much later.
For heat conduction in gas, the simple kinetic theory gives

the resultk= 1
3Cv̄l̄, whereC is specific heat,v̄ is average

velocity, andl̄ is mean-free path. Peierls’ theory of heat con-
duction in insulating solids[1] is a classic on this subject.
These early theories deal with mostly the relevant three di-
mensions. It turns out that low-dimensional systems are more
interesting and in some sense strange. An analysis of a
simple one-dimensional(1D) harmonic oscillator model
shows[2] that there is no well-defined temperature gradient,
the thermal conductivity diverges with system sizes asN1/2

or N, depending on the boundary conditions. There is a gen-
eral argument, for momentum conserving systems, that the
thermal conduction in 1D is necessarily divergent[3].

There have been many analytical and numerical studies of
1D heat conduction(see Refs.[4,5] for review). We mention
some of the most relevant papers to current work. The work
of Lepri, Livi, and Politi [6] by mode-coupling theory and
molecular dynamics suggests a divergent thermal conductiv-
ity exponent of 2/5, i.e.,k~N2/5 for a 1D chain model with
Fermi-Pasta-Ulam(FPU) interactions. Mode-coupling theory
is usually applied in the dynamics of liquids[7,8]. The first
use of this theory in the context of heat conduction appears
only recently, mostly due to Lepri and his collaborators[9].
Pereverzev analyzed the same problem with the Peierls
theory for phonon gas and gave the same conclusion of 2/5
exponent[10]. The result of 2/5 is also supported by numeri-
cal simulation from several groups[11–14]. These results are
supposed to be universal to some extent. However, it is chal-

lenged by a different result of 1/3 by Narayan and Ra-
maswamy [15], based on fluctuating hydrodynamics and
renormalization group analysis. The numerical result for this
1/3 law is not convincing, as for the same model—the hard-
particle gas model—some obtained 1/3[16,17], while others
obtained different value 1/4[18]. But for the FPU model,
there is no good evidence for an exponent of 1/3[19].

When momentum conservation is broken, such as the one
with on-site potential, the heat conduction can become nor-
mal again like the Frenkel-Kontorova model[20] and thef4

model [14,21].
In order to understand the underlying microscopic dy-

namical mechanism of the Fourier law, a different class of
models—billiard channels—has been introduced and studied
in recent years[22,23]. Various exponent values are found in
such systems. Thus, it is believed that a universal constant
does not exist at all. Instead, the divergent(convergent) ex-
ponent of the thermal conductivity is found related to the
power of super(sub) diffusion [23].

Besides the theoretical significance of heat conduction re-
search in low-dimensional systems, it is also of practical im-
portance. Recent development of nanotechnology will enable
us to manufacture devices with feature sizes at molecular
level. The understanding of the heat conduction mechanism
will allow us to control and manipulate heat current, and
eventually to design novel thermal devices with certain func-
tion [24]. To this end, more realistic physical models are
necessary. Among many others, nanotubes and polymer
chains are most promising. There have been a number of
numerical works to compute the thermal conductivity of the
Carbon nanotubes[25,26]. Recent molecular dynamics(MD)
study of carbon nanotubes with realistic interaction potential
suggested a divergent thermal conductivity for narrow diam-
eter tubes[27,28]. The quantum effect of such systems is
also very interesting[29,30].

We study the heat conduction of a 1D solid, as a classical
system. A brief version of this paper is reported in Ref.[31].
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In the rest of the paper, we introduce the quasi-1D chain
model in Sec. II. We discuss the basis of the mode-coupling
theory, the projection method in Sec. III. The mode-coupling
approximations and their numerical and analytical solutions
are discussed in Secs. IV and V. The basic output of the
mode-coupling analysis is the dependence of damping of the
modes with the wave vector of the modes. We find that the
transverse modes are diffusive, withgp

'~p2, while the lon-
gitudinal modes are superdiffusive,gp

i
~p3/2, wheregp is the

decay rate for mode with momentum or lattice wave number
p. We discuss the relationship between the damping of the
modes with the heat conductivity through the Green-Kubo
formula in Sec. VI. Our mode-coupling theory predicts that
the heat conductance diverges with the 1/3 exponent when
the transverse motions are important, while 2/5 is recovered
if the transverse motions can be neglected. In Sec. VII, we
present nonequilibrium molecular dynamics results(with
heat baths) of heat conductance and compare with mode-
coupling theory. We conclude in the last section.

II. CHAIN MODEL

Most of the previous studies considered only strictly 1D
models, with the FPU model as the most representative. The
strictly 1D models may not be applicable to real systems,
such as the nanotubes. Real systems of nanotubes or wires
live in 3D space. The added transverse motion and the flex-
ibility of the tube at long length scales will certainly scatter
phonons, and thus should have a profound effect on thermal
transport.

While a direct simulation of a realistic system, such as a
polyethelene chain with empirical force fields(as in Refs.
[32,33]), or a nanotube with Tersoff potential[34] is pos-
sible, we think it is useful to consider a simplified model
which captures one of the important features of the real
systems—transverse degrees of freedom. Therefore we pro-
pose to study the following chain model in 2D[31]:

Hsp,r d = o
i

pi
2

2m
+

1

2
Kro

i

sur i+1 − r iu − ad2 + Kfo
i

cosfi ,

s1d

where the position vectorr =sx,yd and momentum vectorp
=spx,pyd are 2D;a is lattice constant. The minimum energy
state is atsia ,0d for i =0 toN−1. If the system is restricted to
yi =0 (corresponding toKf= +`), it is essentially a 1D gas
with harmonic interaction. The couplingKr is the spring con-
stant;Kf signifies bending or flexibility of the chain, while
fi is the bond angle formed with two neighboring sites,
cosfi =−ni−1·ni, and unit vectorni =Dr i / uDr iu, Dr i =r i+1−r i.

Unlike the FPU model, which does not have an energy
scale, the second bond-angle bending term introduces an en-
ergy scale. In this work, we take massm=1, spring constant
Kr =1, and the Boltzmann constantkB=1, thus the most im-
portant parameters areKf and temperatureT.

III. PROJECTION METHOD

A. Basic theory of projection

We follow the formulation of the projection method in
Ref. [35]. Let

A =1
a1

a2

A
an

2 s2d

be a column vector ofn components of some arbitrary func-
tions of dynamical variablessp,qd. Each of the functions
ajsp,qd can be complex. Later, we shall chooseaj to be the
canonical coordinates of the system. We useA†

=sa1
* ,a2

* ,¯ ,an
*d to denote the Hermitian conjugate ofA. The

equation of motion forA is

Ȧt = LAt, or ȧjstd = Lajstd, s3d

whereL is the Liouville operator

L = − o ] H

] q

]

] p
+ o ] H

] p

]

] q
. s4d

Equation(3) can be viewed as a partial differential equation
with variablessp,qd and timet. At;Aspt ,qtd=Ast ,p,qd, i.e.,
the quantityA at time t when the initial condition att=0 is
sp,qd. Quantity without a subscriptt will be understood to be
evaluated at timet=0, e.g.,p=pt=0=ps0d. A formal solution
to Eq. (3) is simply At=etLAsp,qd. The projection operator
on a column vectorX is defined by

PX = kX,A†lkA,A†l−1A, s5d

where kX,A†l and kA,A†l are n3n matrices. The angular
brackets denote the thermodynamical average in a canonical
ensemble at temperatureT. The comma separating the two
terms is immaterial, but we use a notation of inner product.
One can verify thatP is indeed a projection operator, i.e.,
P2=P.

If we apply the projection operatorP andP8=1−P to the
equation of motion, we get two coupled equations. Solving
formally the second equation associated withP8 and substi-
tuting it back into the first equation, we obtain an equation
for the projected variable that formally resembles a Langevin
equation:

Ȧt = iVAt −E
0

t

Gst − sdAs ds+ Rt, s6d

wherei =Î−1 is the complex unit, and

Gstd = kRt,R0
†lkA,A†l−1, s7d

iV = kȦ,A†lkA,A†l−1, s8d

Rt = etP8LR0, R0 = Ȧ − iVA = P8LA. s9d

This set of equations is deterministic and formally exact. The
only assumption made is that equilibrium distribution can be
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realized. What is more important is the correlation functions,
which are physical observables. We define the normalized
correlation function(correlation matrix) as

Gstd = kAt,A0
†lkA,A†l−1. s10d

It is an identity matrix att=0 and has the property that

Ġs0d= iV. From Eq.(6) we have,

Ġstd = iVGstd −E
0

t

Gst − sdGssdds. s11d

This equation can be solved formally using proper initial
condition with a Fourier-Laplace transform,

Gfzg =E
0

`

e−iztGstddt, s12d

and similarly forGstd. The solution is

Gfzg = sisz− Vd + Gfzgd−1. s13d

To simplify notation, we have used parentheses[e.g.,Gstd]
for functions in time domain, and square brackets with the
same symbol(e.g., Gfzg) for their corresponding Fourier-
Laplace transform in frequency domain.

The information about the system is in the memory kernel
Gstd. However, such a correlation function is difficult to cal-
culate, since the evolution of the “random force”Rt does not
follow the dynamics of the original Hamiltonian system. For
example, it is impossible to compute directlyRt from mo-
lecular dynamics. For this reason, a “true force” can be in-
troduced which obeys the normal evolution, i.e.,

Ft = etLR0 = Ȧt − iVAt. s14d

The correlation function of the true force,

GFstd = kFt,F0
†lkA,A†l−1, s15d

and that of the random force are related in Fourier space as
[35]

Gfzg−1 = GFfzg−1 − fisz− Vdg−1. s16d

This completes the formal theory of projection due originally
to Zwanzig[36] and Mori [37]. These results are formal and
exact. They give us relation between correlation of the
“force” and correlation of dynamical variables. They are the
starting point for mode-coupling theory. In the next subsec-
tions, we apply it to our chain model and introduce a series
of approximations to solve it.

B. The chain model

We now apply the projection method to our chain model.
We choose the normal modes as the basic quantitiesaj that
we are going to project out. There are several reasons for
choosing the normal modes. To zeroth order approximation,
each mode is nearly independent. The slowest process corre-
sponds to long wave-length modes. The effect of short wave-
length modes can be treated as stochastic noise(the random
force Rt).

We chooseA to be the complete set of canonical momenta
and coordinates:

A =1
Pk

i

Pk
'

Qk
i

Qk
'
2, k = 0,1,¯ ,N − 1, s17d

where

Qk
i =Îm

N
o
j=0

N−1

uje
i2p jk/N, s18d

Qk
' =Îm

N
o
j=0

N−1

yje
i2p jk/N, s19d

Pk
i = Q̇k

i =
1

ÎmN
o
j=0

N−1

pj ,xe
i2p jk/N, s20d

Pk
' = Q̇k

' =
1

ÎmN
o
j=0

N−1

pj ,ye
i2p jk/N. s21d

We have defined the position vectorr j =sxj ,yjd=suj +aj ,yjd,
so thatuj andyj are deviations from zero-temperature equi-
librium position. Because the Fourier transform is a periodic
function, the indexk is unique only moduloN. As a result,
we can also letk vary in the range −N/2øk,N/2. We also
note thatQk

* =Q−k.
With these definitions, we can compute the matrixV and

expression for the true forceF in the general theory. We find
that for kA,A†l, the components are

kPk
mPk8

n*l = dkk8dmn

1

b
, m,n = i , ' , s22d

kPk
mQk8

n*l = 0, s23d

kQk
mQk8

n*l = dkk8dmn

1

bsṽk
md2, b =

1

kBT
. s24d

We have used equal-partition theorem for the average kinetic
energy expression, and the last equation merely defines the
effective frequenciesṽk

m for each mode. Note that due to
translational invariance, correlation between differentk
modes vanishes. Correlation between transverse and longitu-
dinal modes also vanishes due to the reflection symmetry of
yj →−yj for the chain. Thus equal-time correlation forA is
diagonal,

kA,A†l =
1

b
S I 0

0 ṽ−2D . s25d

We have definedṽ as a 2N32N diagonal matrix with ele-
mentsṽk

m; I is a 2N32N identity matrix. Similarly, the cor-

relation kȦ,A†l is found from

kṖk
mPk8

n*l = 0, s26d
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kṖk
mQk8

n*l = − dkk8dmn

1

b
, s27d

kQ̇k
mPk8

n*l = dkk8dmn

1

b
, s28d

kQ̇k
mQk8

n*l = 0. s29d

The second equation is from a general virial theorem[38].
We have

iV = kȦ,A†lkA,A†l−1 = S0 − ṽ2

I 0
D . s30d

The expression for the true forceF=Ȧ− iVA is then

F ; SFP

FQD = SṖk
m + ṽk

m2Qk
m

0
D . s31d

Note that only the momentum sector has a nonzero value,

and Ṗk
m=Q̈k

m is given approximately by Eqs.(50) and (51).
With this special form ofF, the damping matrixG is also
diagonal and is nonzero only in thePP components. With
these results, Eq.(13) becomes

Gfzg = Sizd − ṽ2d

d siz + G̃fzgdd
D , s32d

whered=sṽ2−z2I + izG̃fzgd−1 is a 2N32N diagonal matrix,

and G̃fzg is the Fourier-Laplace transform of the correlation
bkRt

P,sRPd†l, which is also diagonal[we’ll denote asGk
mstd].

In particular, we have the usual expression for the normal-
ized coordinate correlation,

gQQ,k
m std =

kQk
mstdQ−k

m s0dl
kuQk

mu2l
, s33d

gQQ,k
m fzg =

iz + Gk
mfzg

ṽk
m2 − z2 + izGk

mfzg
. s34d

For simplicity, we drop theQQ subscript for the coordinate
correlation for the rest of the paper. Finally, the relation be-
tween the random force correlation and true force correla-
tion, Eq. (16), becomes,

1

Gk
mfzg

=
1

GF,k
m fzg

−
iz

ṽk
m2 − z2 . s35d

The force correlationGF,k
m can be computed from the corre-

lation functionbkFt
P,sFPd†l. It is convenient to separate the

linear term in the force from the nonlinear contribution. So
we write

FPstd = ṽ2Qstd + Q̈std = sṽ2 − v0
2dQstd + fNstd, s36d

whereṽ is effective angular frequency andv0 is bare angu-
lar frequency of the mode. We have dropped the indicesk
andm because these equations apply for any of the modes.fN
is at least quadratic inQ. We note that the correlation of

FPstd is linearly related to the coordinate correlation function
gfzg,

GFfzg =
− izsṽ2 − z2d

ṽ2 +
sṽ2 − z2d2

ṽ2 gfzg. s37d

This is simply a consequence of Eqs.(34) and (35), but can
also be derived directly from the definition. The second de-
rivative of Qstd in frequency domain isQfzg multiplied by
sizd2. Using the fact that

lim
e→0+

E
0

`

Q̈stde−izt−etdt = − z2Qfzg − Q̇s0d − izQs0d, s38d

we can also derive Eq.(37) with the understanding thatk¯l
is an average over the initial conditions. Sincegfzg is finite
or at least should not diverge precisely atz=ṽ, this implies
GFfṽg=0. With the above results, we can derive an expres-
sion of the true force correlation in terms of nonlinear force
correlation,

GFstd
b

= kFPstdFPs0d*l=Dṽ4kQstdQ*s0dl + kfNstdfNs0d*l

− Dṽ2skfNstdQ*s0dl + kQstdfN
* s0dld, s39d

where Dṽ2=v0
2−ṽ2. The mixed term can be expressed in

terms of gfzg by noting that fN=Q̈+v0
2Q. The two mixed

terms kfNstdQ*s0dl and kQstdfN
* s0dl are equal due to time-

reversal symmetry. We find

bṽ2E
0

`

kfNstdQ*s0dle−iztdt = sv0
2 − z2dgfzg − iz. s40d

Finally, we have

GFfzg =
Dṽ2

ṽ2 ss2z2 − v0
2 − ṽ2dgfzg + 2izd + GNfzg. s41d

We can also expressgfzg in terms of the nonlinear part of the
force correlation,GNs=bkfNstdfNs0d*ld:

gfzg =
izs2v0

2 − ṽ2 − z2d + ṽ2GNfzg
sz2 − v0

2d2 . s42d

Again, sincegfzg cannot diverge precisely atz=v0, this im-
plies thatGNfzg must take a special form to cancel the appar-
ent divergence. Thus, if we do not take care of these super-
ficial divergences, we will not be able to make correct
prediction for the correlation function. We can also relate the
original damping functionG to the nonlinear one,

Gfzg =
− isṽ2 − v0

2d2z+ ṽ2sṽ2 − z2dGNfzg
v0

4 − ṽ2z2 − izṽ2GNfzg
. s43d

This last equation is useful for approximating the damping
function. All of these relations are exact. This ends our for-
mal application of the projection method to the chain model.

IV. MODE-COUPLING THEORY

To make some progress for analytic and numerical treat-
ment, we have to make some approximations. First, we con-

J.-S. WANG AND B. LI PHYSICAL REVIEW E70, 021204(2004)

021204-4



sider small oscillations valid at relatively low temperatures.
An approximate Hamiltonian for small oscillations near
zero-temperature equilibrium position, keeping only leading
cubic nonlinearity in the Hamiltonian, is then given by

HsP,Qd =
1

2 o
k;m=i,'

sPk
mP−k

m + vk
m2Qk

mQ−k
m d

+ o
k+p+q;0 mod N

ck,p,qQk
iQp

'Qq
', s44d

where

vk
i2 =

4Kr

m
sin2 kp

N
, s45d

vk
'2 =

16Kf

ma2 sin4 kp

N
, s46d

are the “bare” dispersion relations, and

ck,p,q =
8i

a3m3/2N1/2 sin
kp

N
sin

pp

N
sin

qp

N
S1

2
a2Kr

+ KfS− 2 + cos
2pp

N
+ cos

2pq

N
DD . s47d

The absence ofQiQiQi term in Hamiltonian(44) is due to
the quadratic nature of the potential, while the absence of the
terms of the formQ'Q'Q' and QiQiQ' is due to the re-
flective symmetry abouty axis of the Hamiltonian. We view
k and −k as independent component when taking the deriva-
tives. A slightly modified Hamilton’s equation(because of
the use of complex numbers) describes the dynamics:

Ṗk
n = −

] H

] Q−k
n , s48d

Q̇k
n =

] H

] P−k
n . s49d

This gives the following equations of motion:

Q̈k
i = − vk

i2Qk
i + o

k8+k9=k

ck8,k9
YY Qk8

'Qk9
' , s50d

Q̈k
' = − vk

'2Qk
' + o

k8+k9=k

ck8,k9
UY Qk8

i
Qk9

' , s51d

where

ck,p
YY= i4Î 1

Nm3a2 sin
kp

N
sin

pp

N
sin

sk + pdp
N

3FKr +
2

a2KfS− 2 + cos
2kp

N
+ cos

2pp

N
DG , s52d

ck,p
UY = i8Î 1

Nm3a2 sin
kp

N
sin

pp

N
sin

sk + pdp
N

3FKr +
2

a2KfS− 2 + cos
2pp

N
+ cos

2sk + pdp
N

DG .

s53d

With these expressions, we are ready to compute the force
correlation function in terms of dynamic variablesQk

m. We
write

Fk,m
P = − Dvk

m2Qk
m + fk,m

N , s54d

whereDvk
m2=vk

m2−ṽk
m2 is the difference between bare dis-

persion relation and effective dispersion relation. The second
term fk,m

N denotes the rest of the nonlinear force(we take only
the quadratic terms inQ). Due to translational and reflective
symmetries, the correlation matrix formed byFP is diagonal
without any approximation. The time-displaced correlation
for the diagonal terms defines true force correlation. The
nonlinear part of the contributions is

GN,k
i std < b o

k1+k2=k
o

k3+k4=k

ck1,k2

YY ck3,k4

YY*

3kQk1

'stdQk2

'stdQk3

'*s0dQk4

'*s0dl, s55d

GN,k
' std < b o

k1+k2=k
o

k3+k4=k

ck1,k2

UY ck3,k4

UY*

3kQk1

i stdQk2

'stdQk3

i* s0dQk4

'*s0dl. s56d

In order to have a closed system of equations for the
normalized correlation functions, we use the standard mean-
field type approximation,kQQQQl<kQQlkQQl. Owing to
the d correlation between differentk, the double summation
can be reduced to a single one. We introduce

nN,k
m std = GN,k

m std/p2, p =
2pk

Na
, s57d

and similarlynk
mstd associated withGk

m. In terms ofnNstd, we
obtain

nN,k
i std = o

k1+k2=k

Kk1,k2

i gk1

'stdgk2

'std, s58d

nN,k
' std = o

k1+k2=k

Kk1,k2

' gk1

i stdgk2

'std, s59d

where

Kk1,k2

i = 2kBT* ck1,k2

YY

2psk1 + k2d
Na

ṽk1

'ṽk2

' *
2

, s60d

Kk1,k2

' = kBT* ck1,k2

UY

2psk1 + k2d
Na

ṽk1

i
ṽk2

' *
2

. s61d

Equations(58) and (59) together with the relations among
nN,k

m , Gk
m, andgk

m, Eqs.(34), (43), and(57), form a system of

MODE-COUPLING THEORY AND MOLECULAR DYNAMICS… PHYSICAL REVIEW E 70, 021204(2004)

021204-5



close equations, which can be solved in principle. However,
because of the singular nature atz=v0 in Eq. (42), any ap-
proximation toGN will destroy a subtle cancellation of the
singularity, rendering the problem impossible to solve.

The damping functionGk
mfzg is the central function that a

successful theory needs to be able to calculate. In Fig. 1 we
present examples of such functions determined from equilib-
rium MD simulation in a microcanonical ensemble with pe-
riodic boundary condition. A more correct comparison of
MD with mode-coupling theory should use an ensemble of
initial conditions distributed according to canonical weight.
This may be unimportant whenN is large. We computeGfzg
from the ratio of two correlation functions,gQQfzg /gQPfzg
= iz+Gfzg. For small systems, there are a lot of peak struc-
tures associated with the low-frequency modes; the feature
appears washed out for large systems.

V. SOLUTION OF MODE-COUPING THEORY

A. Numerical solution at finite N

To make the problem tractable, we make a bold approxi-
mation. Instead of Eq.(43), we take

nk
mfzg < nN,k

m fzg. s62d

This is equivalent to sayṽ<v0. This appears justified for
the longitudinal modes at sufficiently low temperatures, but
problematic for the transverse mode, asṽ is linear in wave
numberq but v0 is quadratic inq. We can consider the limit
of smallq. In such limit, the difference betweenGF andG is
dropped. Lepri’s treatment[9] is similar to the above ap-
proximation. We also note that in the work of Scheipers and
Schirmacher for damping of anharmonic crystals[39], effec-
tive cubic coupling is used instead of the “bare” coupling,
ck,p,q. The standard operation of projecting the random force
onto bilinear formQpQq to get the mode-coupling equations

also agrees with the approximation, Eq.(62), but with some-
what different “vertex functions” replacing Eqs.(60) and
(61).

In order to obtain a numerical solution, besides the model
parameters(massm, lattice spacinga, couplingsKr andKf),
we also need the effective dispersion relation. We used MD
data for this purpose. It turns out that a two-parameter fit of
the form

ṽk =
2c

a
Usin

kp

N
U + Svmax−

2c

a
Dsin2 kp

N
s63d

characterizes the effective dispersion relation very well,
wherec is sound velocity at smallk and vmax is maximum
frequency atk=N/2.

We used a fast Fourier transform to solve the equations
iteratively. Given an initialnfzg, correlation function in fre-
quency domain is calculated by Eq.(34). Inverse transform
gives usgstd, which is used to calculate the discrete sum in
Eqs.(58) and (59) to obtainnstd. We transform back to fre-
quency domain for the next iteration.

Figure 2 is our theoretical calculation with parameters ex-
actly at set E. This figure should be compared with the MD
data in Fig. 1. We observe that the predicted results are too
smooth without much structure. The mode-coupling theory
predicts a damping that is a factor of two larger for the lon-
gitudinal modes and much too large for the transverse
modes. By adjusting the temperature to a lower value(one
half for N=8 and a quarter forN=64), we obtain curves
which closely resemble the MD results. However, the mode-
coupling theory still overestimates the value of transverse
damping. It is clear thatK' is considerably smaller in actu-
ally system, but our mode-coupling theory cannot produce a
small enoughK'.

FIG. 1. Damping functions of the slowest modes, i.e., real part
of G1

i fzg (solid line) and G1
'fzg (dashed line) versusz, computed

from MD for parameters of set E:Kr =1, Kf=0.3, a=2, T=0.4, m
=1. The top figure is for sizeN=8 and bottom figure forN=64.

FIG. 2. Real part ofG1
i fzg (solid line) and G1

'fzg (dashed line)
versusz from a full mode-coupling theory for parameters of set E
(same as that in Fig. 1) at N=8 and 64. The input effective disper-
sion relation parameters,ci ,c' ,vmax

i , andvmax
' , are given in Table

I.
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B. An effective Hamiltonian approach

The results presented in Fig. 3 give us some hints that the
mode-coupling equations are essentially correct, but the pa-
rameters of the model need to be adjusted. In fact, simple
perturbative expansion of the Hamiltonian cannot correctly
predict ṽk

'. According to MD result,ṽk
'~k, but the leading

contribution from perturbation calculation should give the
bare frequency,ṽk

'=vk
'~k2.

The adjusting of the parameters can be made more rigor-
ous [39] with an introduction of an effective Hamiltonian,

H̃sP,Qd =
1

2 o
k,m=i,'

sPk
mP−k

m + sṽk
md2Qk

mQ−k
m d

+ o
k+p+q=0

ṼkpqQk
iQp

'Qq
' + o

k+p+q=0
Ṽkpq

s3d Qk
iQp

i Qq
i

= H0 + H8. s64d

The form of the Hamiltonian is dictated by symmetry. Trans-
lational invariance requires thatk+p+q=0smod Nd. The sys-
tem is symmetric under reflection abouty axis or x axis.
Thus the Hamiltonian should be invariant under the transfor-

mation Qk
'→−Qk

' or Qk
i →−Q−k

i . In addition, Ṽkpq is sym-

metric under permutation ofp andq, andṼkpq
s3d is symmetric

under permutation of all three indices. We also have

Ṽ−k,−p,−q=−Ṽk,p,q and similarly forṼkpq
s3d . Although the origi-

nal Hamiltonian does not haveṼs3d term, such a term can be
present. One of the reasons that such a term can be present is
due to the nonanalytic behavior of the potential(because of
the absolute valueu ·u).

We determine the parameters of the effective Hamil-

tonian, ṽk
i , ṽk

', Ṽ, and Ṽs3d by fitting them to the observed
time-independent correlation functions from MD. In order to
be able to carry out the calculation analytically, we treat the

interactions as perturbations, i.e.,Ṽ and Ṽs3d are assumed
small. All the equilibrium averages are approximated by the
leading contribution from the perturbation,

k¯l < k¯s1 − bH8dl0 s65d

wherek¯l0 is thermodynamical average with respect to the
non-interacting harmonic oscillators(product of Gaussian in-
tegrals). Under the above approximation, we find

kuQk
mu2l =

1

bsṽk
md2 + OsṼ2d, s66d

and the interaction parameters

Ṽkpq=
kQk

iQp
'Qq

'l
2bkuQk

i u2lkuQp
'u2lkuQq

'u2l
, s67d

Ṽkpq
s3d =

kQk
iQp

i Qq
i l

6bkuQk
i ul2kuQp

i u2lkuQq
i u2l

. s68d

The actual form of theṽ is fitted according to Eq.(63). For

Ṽ and Ṽs3d we fit into a functional form

Ṽkpq=
ixyz
ÎN

fv0 + v1 z2 + v2sx2 + y2dg, s69d

Ṽkpq
s3d =

ixyz
ÎN

fv3 + v4sx2 + y2 + z2dg, s70d

wherez=sinskp /Nd, x=sinspp /Nd, and y=sinsqp /Nd. The
values ofv0 to v4, together withc and vmax are listed in

Table I. It is surprising that not only is theṼs3d term present,

but also is its magnitude comparable toṼ. The column
markedbare are the parameters corresponding to the bare
Hamiltonian, Eq.(44). The bare parameters are reached only
at very low temperatures, such asT=0.002. Since we have
factored out the leading size dependence, we expect the pa-
rameters weakly depending on sizeN.

Before presenting our results with the effective param-
eters, it is worth pointing out that the standard procedure of
deriving mode-coupling equations gives identical result as
our approximation, Eq.(62). The standard procedure is to

project the random force,Rk=ṽk
2Qk+Q̈k, onto a bilinear form

FIG. 3. Real part ofG1
i fzg (solid line) and G1

'fzg (dashed line)
versusz from a full mode-coupling theory for parameters of set E,
but at different temperatureT. Other parameters are the same as in
Fig. 2.

TABLE I. Parameters for mode-coupling equations.

Set E bare N=8 N=64 N=1024

ci 2 1.435 1.341 1.329

c' 0 0.621 0.669 0.674

vmax
i 2 1.495 1.543 1.553

vmax
' 1.095 1.087 1.182 1.194

v0 2 0.7113 0.6333 0.6337

v1 0 −0.1060 −0.0221 −0.0076

v2 −0.6 −0.1099 −0.1242 −0.1293

v3 0 0.6362 0.8965 0.9312

v4 0 −0.0424 −0.1346 −0.1469
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of the basic variableQk. Applying the general projection op-
erator, Eq.(5), to our case, this bilinear projector is

P2f = o
iÞ j̄ ,iø j

kfQi
*Qj

*l
QiQj

kuQiQju2l
+ o

i

NiQiQī , s71d

where i or j is a pair of indices, e.g.,j =sk,md, and j̄ is
s−k,md. In evaluating the four-point correlation functions, we
have neglected the perturbation term. It turns out that the last
term projects out only thek=0 component. Thus, the specific
values ofNi are not needed.

After applying projectorP2 onto Rk
m, we neglect the dif-

ference between normal dynamicsetL and anomalous dy-
namics forRk

mstd, etP8L. We have

Gk
mstd = bkRk

mstdRk
ms0d*l < bkfetLP2Rk

ms0dgfP2Rk
ms0dg*l.

s72d

The mode-coupling equations are then,

Gk
i std = o

p+q=k

„K̃pq
i gp

'stdgq
'std + K̃pq

s3dgp
i stdgq

i std…, s73d

Gk
'std = o

p+q=k

K̃pq
' gp

i stdgq
'std, s74d

where

K̃pq
i =

b

2

ukRp+q
i Q−p

' Q−q
' lu2

kuQp
'u2lkuQq

'u2l
=

2

b
U Ṽ−p−q,p,q

ṽp
'ṽq

' U2

, s75d

K̃pq
' = b

ukRp+q
' Q−p

i Q−q
' lu2

kuQp
i u2lkuQq

'u2l
=

4

b
U Ṽp,−p−q,q

ṽp
i
ṽq

' U2

, s76d

K̃pq
s3d =

b

2

ukRp+q
i Q−p

i Q−q
i lu2

kuQp
i ulkuQq

i u2l
=

18

b
U Ṽ−p−q,p,q

s3d

ṽp
i
ṽq

i U2

. s77d

Note that the vertex couplingkRkQpQql=ṽ2kQkQpQql is pro-
portional to the three-point correlation independent of the
specific form of random force. This version of mode-
coupling equation need not have the limitation of small os-
cillations and can be applied to high temperatures as well.

Figure 4 is a calculation of the real part ofGk
mfzg for k

=1. Comparing with Figs. 2 and 3, we see that using effec-
tive parameters brings into much better agreement with the
MD data. In fact, comparing to Fig. 1, most of the features
are reproduced, such as the locations and heights of the
peaks. The most important improvement is the ratio of par-
allel to perpendicular damping.

In Fig. 5, we compare the normalized dynamic correlation
functions for sizeN=256 and the slowest modek=1. The
frequencies of oscillations are slightly different in MD and
mode-coupling calculation, thus there are phase shifts at long
times. The longitudinal damping agrees with each other ex-
tremely well. A fit of the logarithm of amplitudes(maxima
and minima) versus time for the MD data gives the decay
rateg1

i <0.00064,g1
'<0.000023, while mode-coupling pre-

dicts g1
i <0.00066 andg1

'<0.000078, respectively. Mode-
coupling theory with effective parameters still overestimates
the transverse damping by a factor of 2–3.

In Fig. 6, we show the damping of the mode in terms of
the decay constantgk, which is defined by the exponential
decay ingstd<cossṽktde−gkt. The symbols are obtained from
MD simulation, while the curves are from the full mode-
coupling theory with effective parameters. For MD data,gk
is obtained by a least-square fit to the amplitudes. For mode-

coupling theory, we use an approximation,gk=s1/2dḠkfṽkg.
The bar means we average over a window centered around
ṽk with width aboutgk. We observe that excellent agreement
between MD data and mode-coupling theory is obtained for
the parallel component. The mode-coupling theory overesti-

FIG. 4. Real part ofG1
i fzg (solid line) and G1

'fzg (dashed line)
versusz from a full mode-coupling theory for set E, using effective
parameters given in Table I.

FIG. 5. The normalized correlation functionsg1
i std (upper part)

andg1
'std (lower part) on aN=256 system for data set E. The solid

curves are from full mode-coupling theory, while the dotted dashes
are from equilibrium molecular dynamics.
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mates the transverse mode damping by some constant factor.
In any case, the slopes of the curves agree very well with the
expected results(to be discussed in the next subsection), gk

i

~k3/2 andgk
'~k2.

C. Large N limit

To simplify the equations further, we consider the large
size limit. Since the large size asymptotic behavior is the
most interesting, such limiting results are justified. We thus
consider the limit ofp→0 and keep only leading contribu-
tions in lattice momentump=2pk/ sNad. In this limit the
three kernel functionsKk1,k2

m become constants. In addition,
we define ak-independentn function by taking the limitp
→0. The leadingk-dependence inGk is k2. When this term is
factored out, we expect thatnk becomes independent ofk in
the limit of largeN and smallp. With these simplification
and approximation, and converting the discrete summation to
integral, we have in the limit of large sizes:

nistd =
1

2p
E

−p/a

p/a

dq „Kigq
'std2 + Ks3dgq

i std2
…, s78d

n'std =
K'

2p
E

−p/a

p/a

dq gq
i stdgq

'std, s79d

where

Ki =
a5Kr

2

2bc'4m3, Ks3d = 0, K' =
a5Kr

2

bci2c'2m3 , s80d

if we use the perturbation expansion Hamiltonian, or

Ki = 4Sa

2
D7 v0

2

bc'4, Ks3d = 36Sa

2
D7 v3

2

bci4 ,

K' = 8Sa

2
D7 v0

2

bci2c'2 , s81d

if we use the effective Hamiltonian. We also linearize the
dispersion relation so thatvp

m=cmp, cm=ci or c' are effective
sound velocities for the longitudinal and transverse modes.
We shall refer to Eqs.(78) and(79) as simple mode-coupling
theory and the finiteN version as the full mode-coupling
theory.

D. Asymptotic analytic solution

Assuming that the simplified mode-coupling equations
represent the essence of the physics regarding the damping
and time-dependent correlation functions, we now consider
analytic solution to Eqs.(78) and(79). First we notice some
constraints on the functions. Becausenmstd is a real function,
we must havenfzg* =nf−zg. Sincegq

ms0d=1, we must have
nms0d=Km /a, for n=i or ' (assumingKs3d=0). This implies
that the Fourier-Laplace transform must be integrable:

ns0d =
1

p
E

−`

`

nfzgdz=
K

a
. s82d

Next, the largez behavior can be obtained by integrating by
part few times, using the boundary conditionsgs0d=1,
g8s0d=0, g9s0d=−ṽ2, and gst→`d=0. For simplicity, we
have omitted the lattice momentum indexq and mode index
i or ', since it is true for anygq

m. With these results, we find

nfzg =E
0

`

nstde−iztdt=
K

2p
E

−p/a

p/a

dqE
0

`

gq
1stdgq

2stde−iztdt

=
K

iaz
+

K

2piz3E
−p/a

p/a

dqsṽ1
2 + ṽ2

2d + OS 1

z5D , s83d

where forni, g1 andg2 are allg', while for n', it is gi and
g'. We can establish that

nifzg ~ sizd−1/2, n'fzg ~ const, s84d

in the limit of small K'. We proceed as follows: first we
assume thatn'fzg=n0

' or n'std=2n0
'dstd. We then derive an

expression fornistd and n'std, and show that indeedn'std
approaches ad-function in a proper limit. Whenn'fzg is a
constant, the inverse Fourier transform for the correlation
functiongfzg can be performed exactly, to give the transverse
correlation function as

gq
'std =

1

2
S1 +

Gq
'

2iv̄
Deiv̄t−f1/2gGq

't +
1

2
S1 −

Gq
'

2iv̄
De−iv̄t−f1/2gGq

't,

s85d

where Gq
'=n0

'q2, and v̄=Îc'2q2−Gq
'2/4<c'q. We have

linearized the dispersion relation,ṽ<c'q. We only look at
the dominant term in time dependence ofnistd. For gq

'std2,
since largeq-mode decays rapidly, we ignore the term with
amplitude proportional toq2, and also drop the oscillatory

term and approximate,gq
'std2<s1/2de−Gq

't. After integrating
overq (we also extend the limit as from −̀to `), we obtain
the leadingt dependence, as

FIG. 6. The decay rategk for each modek for system sizeN
=1024. Circlessgk

i d and trianglessgk
'd are from molecular dynam-

ics by fitting the correlation function, while the continuous curves
are from a full mode-coupling theory for set E, using effective
parameters given in Table I.
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nistd <
Ki

4
Î 1

pn0
't

. s86d

If the oscillatory terms are kept, they only contribute an ex-

ponentially small term,e−sc'd2t/n0
'

; and theq2 terms give a
contribution that decays much faster, ast−3/2. The contribu-
tion from Ks3d term can be neglected, because it decays as
t−2/3 [due to Eq.(91)]. But this term does provide a crossover
from z−1/3 for intermediatez to the asymptoticz−1/2 for very
small z. The Fourier-Laplace transform gives

nifzg <
Ki

4
Î 1

in0
'z

= bsizd−1/2. s87d

We now get an expression for the longitudinal correlation
function. Formally, it is given by the inverse transform

gq
i std =

1

2p
E

−`

` − iz − Gq
i fzg

z2 − ciq2 − izGq
i fzg

eiztdz, s88d

where Gq
i fzg=q2nifzg=bq2/Îiz, b= 1

4Ki /În0
'. The dominant

contribution is fromz when the denominator is close to zero.
The integral can be approximately estimated by the residue
theorem. By location the poles

z2 − ci2q2 − Îiz bq2 = 0, s89d

we obtain the dispersion relation forgq
i std. In the limit of

small q, we find

z< ciq + ig0q
3/2, s90d

whereg0=sÎ2/16dKi /Îcin0
'. Therefore,

gq
i std < e−g0q3/2tcossciqtd. s91d

Similarly with the dispersion relation for the transverse
mode,z<c'q+s1/2din0q

2, we can compute

n'std =
K'

p
E

0

`

dq e−g0q3/2t−f1/2gn0
'q2t cossciqtdcossc'qtd

<K'Î 1

8pn0
't

se−sci − c'd2/2n0
't + e−sci + c'd2/2n0

'td .

s92d

We have neglected theg0 term. Sinceuci−c'u is smaller than
ci+c', we drop the second term. We symmetrically extend
the function. Note thatn'std can be casted into the functional
form

fsstd =
1

2
Îs

p

e−sut

Îutu
, s =

sci − c'd2

2n0
' , s93d

which has the property that

E
−`

`

fsstddt = 1, for all s . 0. s94d

Thus fsstd behaves as ad-function ass→`:

n'std <
K'

uci − c'u
dstd. s95d

This allows us to identify the constantn0
'= 1

2K' / uci−c'u.
The condition fors→` is the same asn0

'→0 or K'→0.
Since K' /Ki=2sc' /cid2 [cf., Eq. (80)], small K' also im-
plies smallc'.

Although the above derivation suggests that the result is
valid only for the special limit. But in fact, this is also the
asymptotic result in the limitz→0. To show this, we note
that the asymptotic behavior is picked up by the scaling
liml→0ldnflzg<nfzg. If this is true, thennfzg~z−d. This
scaling limit coincides with the limit ofK'→0.

E. Numerical solution of the simple theory

For the simple mode-coupling theory that we have already
taken the largeN limit, we can also apply the fast Fourier
transform method. However, we find that a direct numerical
integration in frequency space is much more accurate. For
example,n'fzg is expressed as

n'fzg =
K'

s2pd3E
−`

+`

dvE
−`

+`

dv8 2 F'sv,v8dSP
1

isz− v − v8d

+ pdsz− v − v8dD , s96d

where P stands for Cauchy principal value and

F'sv,v8d =E
0

p/a

gisq,vdg'sq,v8ddq, s97d

gi,'sq,vd =
− iv − ni,'fvgq2

v2 − sci,'d2q2 − ivni,'fvgq2 . s98d

When the linear approximation is made to the dispersion
relations, the integral overq can be performed analytically.
We only need to do a 2D integral overv andv8. The prin-
cipal value integral is taken care by locating exactly the sin-
gularity. Since the integration routine needs a smooth func-
tion nfzg, we fit the results by a Padé approximation[in
variableiz or sizd1/3]. The procedure is iterated several times
for convergence. This is programmed inMATHEMATICA . It
turns out that it is essential to have more than double preci-
sion accuracy in the integration routine in order for the sin-
gular integrals to properly converge. Some results of this
calculation are already presented in Ref.[31].

In Fig. 7, we compare three levels of approximations of
nmfzg: the simple mode-coupling theory, the full theory com-
puted on N=1024 by nmfzg=G1

mfzg / f2p / sNadg2, and the
asymptotic result ofn'fzg= 1

2K's1/uci−c'u+1/uci+c'ud, and
Eq. (87). Noticeable differences are seen between full theory
and simplified. This is partly due to the fact that we are
comparing a finiteN with an infiniteN result. We also note
that the asymptotic slope of −1/2 fornifzg is approached
rather slowly.

Figure 8 shows a stronger crossover effect from slope of
1/3 (corresponding tok~N2/5, to be discussed later) to that
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of the true asymptotic law of 1/2. This set of curves corre-
sponds to data set J.

F. Scaling solution of the simple theory

We now look at some of the scaling properties that are
implied from Eqs. (78) and (79). First, we consider the
simple case ofK=Ki=K', Ks3d=0, and c=ci=c'. In this
case the two equations degenerate into one equation given by
Lepri [9]. By measuring frequency in terms ofc (i.e., con-
sider variablez/c) we can scale awayc, thus the following
equation is an exact scaling

nsz;K,c,ad = cnsz/c;K/c2,1,ad, s99d

wheren is a function ofz with parametersK, c, anda that we
have written out explicitly. This equation tells us that out of

the three parameters that characterize the solution, we can
pick two as independent. The “shapes” of the solutions are
all the same forK /c2=const. Without loss of generality, we
can fixK=1. Next, we consider a general scaling solution of
the form

nslz;K,lDcc,lDaad < l−dnsz;K,c,ad. s100d

Substituting this scaling form into Eq.(96), by requiring that
the result must be consistent, we obtain the following condi-
tions:

2Dq − d − 1 = 0, s101d

Dc + Dq − 1 = 0, s102d

1 − Dq = d, s103d

Da + Dq = 0, s104d

where Dq is scaling exponent associated with integration
variableq, q→lDqq. A unique solution to the set of linear
equations is obtained,d=1/3, Dc=1/3, Da=−2/3, andDq
=2/3.Since Eq.(100) is (approximately) valid for anyl, we
can choosel=1/z. This scaling solution implies that

nsz;K,c,ad < z−1/3ns1;K,c/z1/3,z2/3ad. s105d

Power-law behaviorz−1/3 is obtained in the limit of smallz,
relatively largec, and smalla, if ns1,K ,` ,0d is finite. The
crossover to other behavior occurs at largez,c3 and z
,a−3/2.

A simple dimension analysis also leads to thez−1/3 factor.
Let the dimension of length and time beL and T, respec-
tively. Then the dimensions of relevant quantities arefzg
=T−1, fcg=LT−1, fag=L, fng=L2T−1, and fKg=L3T−2. From
the five quantities, we can construct three dimensionless
variables

P1 =
n

z−1/3K2/3, P2 =
c

z a
, P3 =

K

ac2 . s106d

If there is any relation between thePi’s, it must be in the
form P1= fsP2,P3d (Buckingham Pi theorem[40]), or

nfzg = z−1/3K2/3fSza

c
,

K

ac2D , s107d

where f is an arbitrary, dimensionless function. This result,
of course, is consistent with Eq.(100). This also suggests
that the scaling is not approximate, but an exact result.

Figure 9 is a test of the above scaling by numerical solu-
tions. For smallz, the power-lawz−1/3 is verified to high
accuracy. Since this scaling is exact, the deviations are due
purely to numerical errors in solving the equations. The case
of the coupled longitudinal and transverse equations is some-
what difficult to analyze. We can require a very general scal-
ing of the form

nislz;lDKiKi,lDK'K',lDcici,lDc'c',lDaad

< l−dinsz;Ki,K',ci,c',ad, s108d

and similarly for the perpendicular component. If we require

FIG. 7. Real part ofnifzg (top) andn'fzg (bottom) for data set
E. The smooth curves are from simple mode-coupling theory, the
(red) curves with spikes are computed from full theory atN
=1024, while the straight, dashed lines are analytic asymptotic
results.

FIG. 8. Real part ofnifzg (solid line) andn'fzg (dashed line) for
data set J(Ki=1.532, K'=0.719, andKs3d=2.776). The insert
shows the effective exponent −d ln n /d ln z.
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for consistency of scaling for both longitudinal and trans-
verse components, we find that the only scaling solution is
the symmetric solution, i.e., the scaling discussed above with
identical longitudinal and transverse scaling exponents. If we
abandon the exact scaling for the transverse component and
look only at longitudinal component, we can require that

d' = 2Dq − 1, s109d

di = 1 −DKi − Dq, s110d

Dc' = 1 −Dq. s111d

As before we can require that there is no scaling for the
coupling constantKi without loss of generality(i.e., DKi =0),
the above equations imply a relation

2di + d' = 1. s112d

In particular, ifd'=0, we must havedi=1/2 andDc'=1/2.
This is consistent with the fact that the scaling region ofdi

=1/2 is obtained for smallc'.
A complete and clear scaling picture is still lacking. From

the numerical solution, we observe that besides well-
characterized scaling regimes, there are also plenty of inter-
mediate regions and crossovers. For very largec' and small
K', or smallc' and largeK', the behavior of the solutions
are difficult to characterize.

VI. GREEN-KUBO FORMULA

In this section, we make the connection of the damping of
modes with thermal conduction. The starting point is the
Green-Kubo formula for transport coefficient:

k =
1

kBT2aN
E

0

`

kJstdJs0dldt. s113d

For the special case of heat conduction in a 1D chain, it is
better to callk heat conductance rather than heat conductiv-

ity. In analogous to electric circuit, the heat conductance re-
lates the temperature gradient to energy current(Fourier
law),

I = − k
dT

dx
. s114d

The quantityJstd is related to energy current byJ= IaN. The
central quantity that we compute in equilibrium and nonequi-
librium heat conduction is the(total) heat currentJ. Since the
heat current is a macroscopic concept determined by the con-
servation of(internal) energy, a microscopic version of it is
not unique. The current expression must satisfy the energy
continuity equation in the long-wave limit. We derive an ex-
pression starting fromJ=oi dsr ihid /dt, where the local en-
ergy per particle is hi =

1
4KrfsuDr i−1u−ad2+suDr iu−ad2g

+Kf cosfi +pi
2/ s2md. By regrouping some of the terms us-

ing translational invariance, we arrive at the heat current per
particle:

m j i = − Dr ifspi + pi+1d ·Gsidg− Dr i−1fspi + pi−1d ·Gsi − 1dg

+ Dr i−1fpi ·Hsi − 2,i − 1,i − 1dg

+ Dr ifpi ·Hsi + 1,i + 1,idg + pihi , s115d

where Gsid= 1
4KrsuDr iu−adni, Hsi , j ,kd=Kfsni +nk cosf jd /

uDr ku, ni is a unit vector in direction ofDr i =r i+1−r i. The
total heat current inx direction,J=oi j x,i is the quantity ap-
pearing in the Green-Kubo formula. It is equal to the mac-
roscopic heat current density(energy per unit area per unit
time) integrated over a volume.

For theoretical analysis, we need to expressJ in terms of
the dynamical variablesPk andQk. A general expression will
be rather complicated. Again as in mode-coupling approach,
we consider small oscillation expansions and only the lead-
ing contributions. Neglecting the nonlinear contribution of
OsQk

3d, we obtain

J = o
k,m

bk
mQk

mP−k
m , bk

m = ivk
m ] vk

m

] S2pk

Na
D , s116d

wherevk
m is the bare dispersion relation given by Eqs.(45)

and(46). More general expression in a quantum-mechanical
framework including the cubic terms is given in Ref.[42].
An approximation for the correlation function of the current
can be obtained, again using a dynamic mean-field approxi-
mation, as

kJstdJs0dl = o
k,m

ubk
mu2hkQk

mstdQ−k
m s0dlkPk

mstdP−k
m s0dl

+ kQk
mstdP−k

m s0dl2j. s117d

The above expression can be further simplified by the ap-

proximationPk
m=Q̇k

m< ṽk
mQk

m. We find

FIG. 9. Real part (top) and imaginary part(bottom) of
l1/3nslz;K ,l1/3c,l−2/3ad versusz for K=c=a=1 andl=1 (solid
line), 1/8 (open circles), and 8(crosses).
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kJstdJs0dl < o
k,m
U bk

m

bṽk
mU2

gk
mstd2

<
aNscid2

2pb2 E
0

`

cos2sṽp
i tde−2gp

i
tdp~

Nscid2

b2 t−1/s2−did.

s118d

We have dropped the contribution from the perpendicular
component because it decays much faster(due to an extrap2

factor in the integrand). We compare the mode-coupling re-
sult of Green-Kubo integrand with that of MD in Fig. 10. We
have used Eq.(117) for the mode-coupling calculation. Note
that the correlation functionskQstdQs0d*l, kPstdPs0d*l, and
kQstdPs0d*l are simply related in frequency domain through
Eq. (32). The agreement is reasonable with the largest devia-
tion about a factor of 2. The asymptotic behavior oft−2/3 is
consistent with both sets of results.

The heat conductance on a finite lattice is sensitive to
boundary conditions. Clearly, in the mode-coupling formula-
tion, we have used periodic boundary condition. If we inte-
grate over time from 0 tò first on the second line of Eq.
(118), we obtaink~edp/gp. On a finite lattice we have a
lower momentum cutoff, 2p / sNad. The size dependence of
the conductance on finite lattice is then

kN ~ N1−di. s119d

Sincedi=1/2, k~ÎN. This result is in agreement with that
of Deutsch and Narayan for a model(the random collision
model) where transverse motion is taken into account only
stochastically[16].

In Fig. 11, the mode-coupling result ofkN is compared
with equilibrium MD result with periodic boundary condi-
tions. Excellent 1/2 power is observed for the mode-
coupling result. We found it is rather difficult to get con-

verged value from MD. But the results are consistent with a
ÎN law.

The relation of the mode-coupling theory with the results
of nonequilibrium situation of low- and high-temperature
heat-baths at the ends is not clear cut. The standard assump-
tion is that the correlation should be cut off by a time scale of
orderN due to the interaction with the heat baths. Finite size
result is obtained by integrating the power-law decay to a
time of OsNd. This gives us the asymptotic behavior for the
conductance at largeN as

kN ~ Na, a = 1 −
1

2 − di

. s120d

Since we finddi=1/2 for small K', the thermal conduction
diverges asN1/3. WhenKs3d is sufficiently large, we observe
N2/5.

VII. NONEQUILIBRIUM MD STUDY

A. MD simulation details

We note that the interaction potential is not smooth at the
point when two particles overlap. This can cause numerical
instability. Thus, we replaced the original potential with a
modified one,

Dr = ur i+1 − r iu → Dr8 = Dr +
e2

Dr + e
, s121d

which smooths out the discontinuous derivatives atDr =0
with a small correction of ordere2. In addition to replacing
the spring potential by1

2KrsDr8−ad2, we also replace the
cosine term by

FIG. 10. The Green-Kubo integrand from MD(circles) and
mode-coupling theory(curve) for set E with sizeN=1024. The
straight has a slope −2/3. The insert shows the same data on a
linear scale.

FIG. 11. The finite lattice conductance defined by Green-Kubo
formula at parameter set E. Solid circles are from full mode-
coupling theory; the triangles are from molecular dynamics with
periodic boundary condition; the straight lines have slope of 1/2.
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cosfi8 = −
Dr i−1 · Dr i

Dr i−18 Dr i8
, s122d

so that the value is well defined for all positionsr i. In actual
simulation, we have used very smalle,10−3 to 10−4 so that
its effect should be comparable to error caused by finite time-
steph. We also used largee as a way of simulating a slightly
different model to study the robustness of the results. We
solve the system of equations[41]

dpi

dt
= 5 f i − jLpi , if i , Nw;

f i , if N − Nw . i ù Nw;

f i − jHpi , if i ù N − Nw;

s123d

wheref i is the total force acting on thei-th particle,jL andjH
obey the equation

djL,H

dt
=

1

Q2S− 1 +
1

kBTL,HNw
o

i

pi
2

mD , s124d

whereTL andTH are the temperatures of the two heat baths
at the ends. The summation is over the particles belonging to
the heat bath. We have used four particles for the Nosé-
Hoover heat baths, with extra first two and last two particles
at fixed positions. The coupling parameterQ is taken to be 1.
For the central part, we used a second-order symplectic al-
gorithm (or equivalently, the velocity Verlet algorithm),
while for the heat bath, we used a simple difference scheme
accurate to second order inh for j.

Although the total energy(Hamiltonian) is no longer a
conserved quantity when the heat bath is introduced, the
above equation still has a conserved quantity of similar char-
acter:

Hsp,qd + o
x=L,H

NwkBTxS1

2
Q2jx

2 +E
0

t

jxdtD . s125d

This quantity can be used to monitor the stability of the
algorithm. Since we run for very long time steps of
108–1010, it is essential that the algorithm is stable over an
extended period of time. Even with a symplectic algorithm,
stability is not guaranteed by merely taking smallhs,10−4d.
Thus, we adjusted the conserved quantity, Eq.(125), to its
starting value after certain number of steps.

B. Heat conductance results

In Fig. 12, we observe that good temperature profiles are
established. Due to relatively large temperature difference
between low- and high-temperature heat baths, and perhaps
also due to the nature of heat baths, the profile is not linear.
However, the scaling withN is approximately obeyed.

In addition to the thermal conductance results reported in
Ref. [31], Fig. 13 gives additional data for variety of param-
eters. One of the aims of these additional runs is to check the
robustness of the 1/3 power law for thermal conductance. It
is found in Ref [31] for set E exponenta=0.334±0.003.
This is an excellent confirmation of the mode-coupling
theory. We note that at parameter setK, the 1/3 law is not
destroyed by introducing largee. Thus we believe that the

1/3 law is not specific to the potential used in Ref.[31]. In
fact, the FPU model with transverse motion was studied[43]
and the result is also consistent with the 1/3 power law.

At low temperatures for sets I and C, we appear to ob-
serve exponent of 0.4. What is particularly interesting for set
C is that the chain is compressed to an average distance of
1.5 from the equilibrium distance of 2. The behavior is not
changed much comparing to the uncompressed chain. Sets G
and L represent very large angular couplingKf. We note that
Kf→` corresponds to a situation that equilibrium cannot be
established. AsKf becomes larger, the equilibration becomes
increasingly difficult. In Ref.[31] we reported a logarithmic
behavior forKf=1 (set B). This logarithmic behavior does
not maintain whenKf is increased further. The exponenta

FIG. 12. Temperature ofith particle,Ti versus scaled position,
i /N, for data set E withN=64 (plus), 256 (dash line), and 1024
(solid line).

FIG. 13. jN versusN for different parameterssKf ,TL ,TH ,ed. set
C: sKf ,TL ,TH ,ed=s0.1,0.2,0.4,0d, the chain is compressed to have
an average distance between particled0=1.5; set G:(10, 0.2, 0.4,
0); set I: (0.1, 0.3, 0.5, 0.2); set K: (0.5, 1.2, 2, 0.4); set L: (25, 1,
1.5, 0.2). All of the sets haveKr =1, massm=1, and lattice constant
a=2. The number indicates the slope of least-squares fit.
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for sets L and G is closed to 1/2. This may be related the
results of disordered harmonic chain.

VIII. CONCLUSION

Lepri et al. introduced mode-coupling theory into the
problem of heat conduction in low-dimensional systems to
interpret the MD results qualitatively. We have developed the
theory further by introducing a “full theory” and effective
parameters for the theory. The full theory is solved numeri-
cally. At this level of approximation, we find that the mode-
coupling theory gives excellent prediction on a quantitative
level. The longitudinal damping(decay rate) gk

i agrees with
MD data within a few percent of deviation. The mode-
coupling theory somewhat overestimated the transverse
damping gk

' by a factor of two to three. The full theory
assumes that the damping function(memory kernel) Gkfzg is
an explicit function of two variables,k and z. In a simple
mode-coupling theory, we assumeGkfzg<f2pk/ sNadg2nfzg,
valid for small k/N. The simple theory is computationally
efficient and contains essential asymptotic features, i.e.,gk

i

~k3/2 and gk
'~k2. Through detailed comparison between

MD and mode-coupling theory on memory kernel, decay of
the modes, the time-dependent correlation functions, Green-
Kubo integrand, and finally the finite-size conductance, we
have strong evidence that the mode-coupling theory is cor-
rect, and it captures the essential features of the system.

We have used parameter set E as the main data set for
comparison. The reason for choosing this particular set of
parameters is that it gives the cleanest power-law behavior.
Other parameters will be either qualitatively similar, or
crossovers will be observed. In fact mode-coupling theory
naturally predicts crossover due to the presence ofKs3d term.
When this term is dominant, or the transverse effect can be
neglected, we should see behavior ofk~N2/5. Thus we feel
that the controversy of the result of Lepriet al. [6] and that
of Narayan and Ramaswamysk~N1/3d [15] can be recon-
ciled within the current mode-coupling theory.
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