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We study heat conduction in a 1D chain of particles with longitudinal as well as transverse motions. The
particles are connected by 2D harmonic springs together with bending angle interactions. The problem is
analyzed by mode-coupling theory and compared with molecular dynamics. We find very good, quantitative
agreement for the damping of modes between a full mode-coupling theory and molecular dynamics result, and
a simplified mode-coupling theory gives qualitative description of the damping. The theories predict generi-
cally that thermal conductance divergesNi§® as the sizeN increases for systems terminated with heat baths
at the ends. Th&?® dependence is also observed in molecular dynamics, which we attribute to crossover
effect.
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I. INTRODUCTION lenged by a different result of 1/3 by Narayan and Ra-
maswamy[15], based on fluctuating hydrodynamics and

The problem of hgat conduction is a yvell—studled_ fleld'renormalization group analysis. The numerical result for this
More than two centuries ago, Joseph Fourier summarized thf

. . . /3 law is not convincing, as for the same model—the hard-
behavior of heat conduction by the law that bears his name, ticje gas model—some obtained 11%,17, while others

This law describes phenomenologically that the heat currergpiained different value 1/418]. But for the FPU model,

is proportional to the temperature gradient. The detailed atoghere is no good evidence for an exponent of 119].

mistic theories of heat conduction appeared only much later. \when momentum conservation is broken, such as the one
For heat conduction in gas, the simple kinetic theory givesyith on-site potential, the heat conduction can become nor-
the resultx=%Cul, whereC is specific heatp is average mal again like the Frenkel-Kontorova mod@p] and the¢*
velocity, andl is mean-free path. Peierls’ theory of heat con-Model[14,21.

duction in insulating solid$1] is a classic on this subject. narlr?icc;rldrireé%a%?grﬁrzﬁ‘a':]hde tlk:'guﬁg??;&’lmg (;Ti]flf(érr%srﬁocplgssd%-f
H(lee:seioizrlﬁ :anzrlgjt?ﬁi I\(')th' dirswoesr:zotrk:ael rseft\é ?2; ;hrreereng:'models—billiard channels—has been introduced and studied
int " : di A Ay vsis of i recent year$22,23. Various exponent values are found in
INteresting and in Some Ssense strange. An analysis ot g, systems. Thus, it is believed that a universal constant
simple one-dimensiona{1D) harmonic oscillator model

. ; ~ _does not exist at all. Instead, the divergérdnvergent ex-
shows[2] that there is no well-defined temperature gradient,)onent of the thermal conductivity is found related to the
the thermal conductivity diverges with system sizes\N& power of supesub diffusion [23].
or N, depending on the boundary conditions. There is a gen- Besjdes the theoretical significance of heat conduction re-
eral argument, for momentum conserving systems, that thgearch in low-dimensional systems, it is also of practical im-
thermal conduction in 1D is necessarily diverggsit portance. Recent development of nanotechnology will enable
There have been many analytical and numerical studies afs to manufacture devices with feature sizes at molecular
1D heat conductioigsee Refs[4,5] for review). We mention  level. The understanding of the heat conduction mechanism
some of the most relevant papers to current work. The workvill allow us to control and manipulate heat current, and
of Lepri, Livi, and Politi [6] by mode-coupling theory and eventually to design novel thermal devices with certain func-
molecular dynamics suggests a divergent thermal conductivtion [24]. To this end, more realistic physical models are
ity exponent of 2/5, i.e.xxN?® for a 1D chain model with necessary. Among many others, nanotubes and polymer
Fermi-Pasta-UlaniFPU) interactions. Mode-coupling theory chains are most promising. There have been a number of
is usually applied in the dynamics of liquidg,8]. The first  numerical works to compute the thermal conductivity of the
use of this theory in the context of heat conduction appear€arbon nanotubd®5,26. Recent molecular dynami¢sD)
only recently, mostly due to Lepri and his collaboratf®% study of carbon nanotubes with realistic interaction potential
Pereverzev analyzed the same problem with the Peierlsuggested a divergent thermal conductivity for narrow diam-
theory for phonon gas and gave the same conclusion of 2/8ter tubes[27,28. The quantum effect of such systems is
exponen{10]. The result of 2/5 is also supported by numeri- also very interesting29,30.
cal simulation from several group$1-14. These results are We study the heat conduction of a 1D solid, as a classical
supposed to be universal to some extent. However, it is chakystem. A brief version of this paper is reported in R8t].
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In the rest of the paper, we introduce the quasi-1D chain 1. PROJECTION METHOD
model in Sec. Il. We discuss the basis of the mode-coupling
theory, the projection method in Sec. lll. The mode-coupling
approximations and their numerical and analytical solutions We follow the formulation of the projection method in
are discussed in Secs. IV and V. The basic output of thé&ef.[35]. Let
mode-coupling analysis is the dependence of damping of the

modes with the wave vector of the modes. We find that the

transverse modes are diffusive, wiglj « p?, while the lon- A a 2
gitudinal modes are superdiffusivg, < p*2, wherey, is the :
decay rate for mode with momentum or lattice wave number
p. We discuss the relationship between the damping of the
modes with the heat conductivity through the Green-Kubdoe a column vector of components of some arbitrary func-
formula in Sec. VI. Our mode-coupling theory predicts thattions of dynamical variable$p,q). Each of the functions
the heat conductance diverges with the 1/3 exponent whea(p,q) can be complex. Later, we shall choageto be the
the transverse motions are important, while 2/5 is recoveredanonical coordinates of the system. We us¥

if the transverse motions can be neglected. In Sec. VII, we(a;,a;, - ,a,) to denote the Hermitian conjugate Af The
present nonequilibrium molecular dynamics resulgth equation of motion foA is

heat bathg of heat conductance and compare with mode- _

coupling theory. We conclude in the last section. Ac=LA, or at)=Lat), (3)

A. Basic theory of projection

where L is the Liouville operator

Il. CHAIN MODEL E ﬁi*_ ﬂHi

. Jqap = dpaq

Most of the previous studies considered only strictly 1D . _ o _ _
models, with the FPU model as the most representative. Thgquation(3) can be viewed as a partial differential equation
strictly 1D models may not be applicable to real systemsWith variables(p,q) and timet. A;=A(p;, ) =A(t,p,q), i.e.,
such as the nanotubes. Real systems of nanotubes or wir¥ quantityA at timet when the initial condition at=0 is
live in 3D space. The added transverse motion and the flexd,d). Quantity without a subscrigitwill be understood to be
ibility of the tube at long length scales will certainly scatter evaluated at tim¢=0, e.g.,p=p=o=p(0). A formal solution
phonons, and thus should have a profound effect on thermé&b Eq. (3) is simply A.=€e“A(p,q). The projection operator
transport. on a column vectoK is defined by

While a direct simulation of a realistic system, such as a _ -
polyethelene chain with empirical force fieldas in Refs. PX=(XANAADTA, (5)

[32,33), or a nanotube with Tersoff potentifB4] is pos-  \here (X,A") and (A,A") are nxn matrices. The angular

sible, we think it is useful to consider a simplified model yrackets denote the thermodynamical average in a canonical

which captures one of the important features of the reabsemple at temperatufie The comma separating the two
systems—transverse degrees of freedom. Therefore we prgsims is immaterial, but we use a notation of inner product.

(4)

pose to study the following chain model in ZB1]: One can verify thatP is indeed a projection operator, i.e.,
P2=P.
2 4 If we apply the projection operat@ andP'=1-P to the
Ny b4 a2 _ equation of motion, we get two coupled equations. Solving
Hp.r) E, 2m * ZKrEi (rivs=ril -+ K¢Ei cos ¢, formally the second equation associated withand substi-

1 tuting it back into the first equation, we obtain an equation
@) for the projected variable that formally resembles a Langevin
equation:

where the position vectar=(x,y) and momentum vectqo . t

=(px. py) are 2D;ais lattice constant. The minimum energy A=i1QA - fo I't-s)A;ds+R,, (6)
state is atia,0) for i=0 toN-1. If the system is restricted to .

yi=0 (corresponding t 4= +x), it is essentially a 1D gas wherei=\-1 is the complex unit, and

with harmonic interaction. The coupliri} is the spring con-

stant; K signifies bending or flexibility of the chain, while '@ =<Rt'Rg><A’AT> g (7)

¢; is the bond angle formed with two neighboring sites, )

cos ¢ =—n;_;-n;, and unit vecton; =Ar;/|Ar;|, Ar;=ri,,—r;. iQ=(AANWAANT, (8)
Unlike the FPU model, which does not have an energy

scale, the second bond-angle bending term introduces an en- R=eP*R, Ry=A-iQA=7P'LA. (9)

ergy scale. In this work, we take mass=1, spring constant
K;=1, and the Boltzmann constakg=1, thus the most im- This set of equations is deterministic and formally exact. The
portant parameters ake, and temperaturg. only assumption made is that equilibrium distribution can be
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realized. What is more important is the correlation functions, We chooseA to be the complete set of canonical momenta
which are physical observables. We define the normalizednd coordinates:
correlation function(correlation matrix as

Pl
G(t) = (A A(A A, (10) P
L . A=| |, k=0,1,-,N-1, 17
It is an identity matrix att=0 and has the property that ’
G(0)=iQ. From Eq.(6) we have, Q
t
: h
G(t) =i0G(1) - J I(t-9)G(9)ds. ap e -
0 M ..
Il — _ _el27TJk/N 18
This equation can be solved formally using proper initial k Ngo Y ’ (18
condition with a Fourier-Laplace transform,
N-1
o0 ) m 2
Glz] = f e1G(t)dt, (12) Qi = N% y;e 2N, (19
0 j=
and similarly forI'(t). The solution is N-1
: 4 Pl= Q= =2 pj,e® ™, (20
Glz]=(i(z- Q) +T[2) ™. (13) ymNiS
To simplify notation, we have used parenthepeg., G(1)] -

for functions in time domain, an_d square bra_ckets Wit_h the pl— Ol = LS gk
same symbole.g., G[z]) for their corresponding Fourier- k= Q= \’,m‘_o Pj.y€ '
Laplace transform in frequency domain. .

The information about the system is in the memory kerneM/e have defined the position vectgr~=(x;,y;)=(u;+aj,y;),
I'(t). However, such a correlation function is difficult to cal- so thatu; andy; are deviations from zero-temperature equi-
culate, since the evolution of the “random fordg’does not librium position. Because the Fourier transform is a periodic
follow the dynamics of the original Hamiltonian system. For function, the index is unique only moduldN. As a result,
example, it is impossible to compute direc® from mo-  we can als*o lek vary in the range N/2<k<N/2. We also
lecular dynamics. For this reason, a “true force” can be innote thatQ,=Q_y.

(21)

troduced which obeys the normal evolution, i.e., With these definitions, we can compute the mafpixand
. expression for the true fordein the general theory. We find
Fi=e“Ry= A - iQA,. (14)  that for(A,A"), the components are
The correlation function of the true force, " 1
<P'LkLPk,> = 5kk/5W—, MV = I , L, (22)
T(t) = (F, FO(A AN, (15) A
and that of the random force are related in Fourier space as <P'§Q|:T> =0, (23)
[39]
Mz =Tzt -[iz- )™ 16 " 1 1
[ ] F[ ] [ ( )] (16) <Q{<LQk’> = 5kk'5;wﬁi B= ﬁ (24)
This completes the formal theory of projection due originally Blw) B8

to Zwanzig[36] and Mori[37]. These results are formal and \\e have used equal-partition theorem for the average kinetic
exact. They give us relation between correlation of thegnergy expression, and the last equation merely defines the
“force” and correlation of dynamical variables. They are thegffective frequenciessf for each mode. Note that due to
starting point for mode-coupling theory. In the next subsecyransiational invariance, correlation between different
tions, we apply it to our chain model and introduce a seriesnodes vanishes. Correlation between transverse and longitu-

of approximations to solve it. dinal modes also vanishes due to the reflection symmetry of
y;——y; for the chain. Thus equal-time correlation faris
B. The chain model diagonal,
We now apply the projection method to our chain model. (AATY = 1 Y (25)
We choose the normal modes as the basic quantfi¢isat ' B\0 @2/

we are going to project out. There are several reasons for ) _ .
choosing the normal modes. To zeroth order approximation/V/é have defined as a Nx 2N diagonal matrix with ele-
each mode is nearly independent. The slowest process cor@€ntsey; | is a N 2N identity matrix. Similarly, the cor-
sponds to long wave-length modes. The effect of short waverelation (A, Al) is found from

length modes can be treated as stochastic nthserandom RO
force R)). (P{P)=0, (26)
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o 1 FP(t) is linearly related to the coordinate correlation function
<Pk Qk’> == 5kk’ 5;1,1/51 (27) g[z],
—iz(@*-2) (@*-2)>?
e 1 Uelz]= ———+——=5—dz]. (37
(QkP) = S Oy (28) w w

: This is simply a consequence of E¢84) and(35), but can
AT also be derived directly from the definition. The second de-
(QkQ?=0. (29) rivative of Q(t) in frequency domain i€Q[z] multiplied by

e
The second equation is from a general virial theof@gj. ~ (12)™ Using the fact that

We have w ) .
0 _z2 Iim+ f Q(t)e " ¢dt = - 2Q[z] - Q(0) —izQ(0), (38)
i0 :<A,AT><A,AT>‘1:< v ) (30) 0o
0 we can also derive E¢37) with the understanding thét: -)
The expression for the true forée=A—iOA is then is an average over the initial conditions. Sirgle] is finite
or at least should not diverge preciselyzatw, this implies
FP B |'3{<L+z)kaZkaL I'e[@]=0. With the above results, we can derive an expres-
F= Q)™ 0 : (31) sion of the true force correlation in terms of nonlinear force
correlation,

Note that only the momentum sector has a nonzero value,
and Py=Qf is given approximately by Eqg50) and (51).
With this special form offF, the damping matriX” is also
diagonal and is nonzero only in tHeP components. With - AD2((f(DQ'(0)) +(Q(D) T (0))), (39
these results, Eq13) becomes

izd -%%d )
d (iz+T[z])d/’

LU (FPOFP(0))=A0%Q(1)Q (0)) + (fu(Dfn(0))

where A@?=wj— % The mixed term can be expressed in
terms ofg[z] by noting thath:("Q+w§Q. The two mixed
terms (f(t)Q"(0)) and <Q(t)ff\‘(0)> are equal due to time-
reversal symmetry. We find

G[z]= ( (32

whered=(a2-221 +izI[z]) ! is a 2Nx 2N diagonal matrix, .

andI[z] is the Fourier-Laplace transform of the correlation g;;ﬂf (Fn()Q'(0))edt = (wj - P)g[z] —iz. (40)
BRP,(RP)™), which is also diagongwe’ll denote as'{(t)]. 0

In particular, we have the usual expression for the normalgingly, we have

ized coordinate correlation,

(QK(H)Q4(0))
Joox(t) = —k<|QM|2k> , (33
« We can also expreg$z] in terms of the nonlinear part of the
iz + 1{Z] -~ force correlation]'y(=B{f\({)fn(0))):
12 2 4zl 2)’ ozl iZ(2w3 — @? - ) + @°T\[2]
- 2
For simplicity, we drop theQQ subscript for the coordinate (Z- wo)z
correlation for the rest of the paper. Finally, the relation be-again, sinceg[z] cannot diverge precisely at wy, this im-

tyveen the random force correlation and true force correlap"es thatl"y[z] must take a special form to cancel the appar-
tion, Eq.(16), becomes, ent divergence. Thus, if we do not take care of these super-

1 1 iz ficial divergences, we will not be able to make correct

= - : 35 icti i i
Tzl Tglzl -7 (35 prediction for the correlation function. We can also relate the

original damping functiod” to the nonlinear one,
I ) _ o
The force correlatiod’¥ , can be computed from the corre i@ W22+ D@ - DT[]

AG?
Tez] = g(@z2 - w3-aA)glz] + 2iz) +T\[z]. (41)

M 7zl =
960K 2] =

(42)

lation function,B(FP,(FF’)*>. It is convenient to separate the I'[z]= YT — (43)
linear term in the force from the nonlinear contribution. So Wo~ W 7 - iZoT\[Z]
we write This last equation is useful for approximating the damping

~ - ~ function. All of these relations are exact. This ends our for-

FP(H) =3%Q(0) + QD) = (@ - ) Q(D) + f(),  (36) mal application of the projection method to the chain model.
wherew is effective angular frequency and is bare angu-

lar frequency of the mode. We have dropped the indices

andu because these equations apply for any of the mdges.  To make some progress for analytic and numerical treat-

is at least quadratic i1Q. We note that the correlation of ment, we have to make some approximations. First, we con-

IV. MODE-COUPLING THEORY
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sider small oscillations valid at relatively low temperatures. Uy 1 km . pm . (k+p)w
An approximate Hamiltonian for small oscillations near  Cgp =18 NITe 5 SIN— SIN—— siIn————

I . . . N N N
zero-temperature equilibrium position, keeping only leading
cubic nonlinearity in the Hamiltonian, is then given by

2 2 2(k+
X|:Kr+;K¢<—2+CGa Zw+cos ( p)w)]

N
1
HP.Q =3 2 (PEPh+ of*QQty) (53
Kip=l, L . .
g With these expressions, we are ready to compute the force
+ > Cip.aQeQp Qg » (44)  correlation function in terms of dynamic variabl¥’. We
k+p+g=0 mod N write
where Fe,=—Aof?QE+ 1Y, (54)

K K where Aw/?= 0/~ o} is the difference between bare dis-
w‘i‘f =—Tgj o (45) persion relation and effective dispersion relation. The second

N’ termfl’z"ﬂ denotes the rest of the nonlinear fofeee take only
the quadratic terms i@). Due to translational and reflective
16K K symmetries, the correlation matrix formed BY is diagonal
12_ b o g N . - .
w“= e sin® N (46) without any approximation. The time-displaced correlation

for the diagonal terms defines true force correlation. The
nonlinear part of the contributions is

I ) ~ YY vy
=g 2> > kal,kZCk3,k4

are the “bare” dispersion relations, and

8i k 1 = =
Cpa= Zaazgiz SN WW sin DWW sin %(EazK, kl+ki kk3+kj P
am X(Qi, (DQ, (N Q4 (0, (0)), (55)
+K (—2+c032lp+c032lq>> (47)
’ N N /) T~ 2 > o,
Ky Hho=kka+ky=k
The absence oQ'Q'Q' term in Hamiltonian(44) is due to I PR 1
the quadratic nature of the potential, while the absence of the "(Q(VQ, N Q0)Q, (O (56)
terms of the formQ*Q* Q" and Q'Q'Q" is due to the re- In order to have a closed system of equations for the

flective symmetry abouy axis of the Hamiltonian. We view  normalized correlation functions, we use the standard mean-
k_and « as mdepend.e_nt component when Faklng the derivafie|d type approximation{QQQQ =~(QQ}QQ). Owing to
tives. A slightly modified Hamilton's equatiotbecause of e 5 correlation between differeri; the double summation

the use of complex numbgrdescribes the dynamics: can be reduced to a single one. We introduce
: 27k
py=- 21 (49) WO =TE O, p=", (57)
k v Na
9 Q%
and similarly v (t) associated with. In terms ofyy(t), we
. JH obtain
Q=5 (49)
IP = 2 Ki kGO ®), (58)
ky+ko=k
This gives the following equations of motion:
= 2 Ki o8l D80, (59)
Q‘ll(: - w‘l‘(z |||(+ E C:!YkllQli;Q;r (50) ky+ko=k
=k where
YY 2
~ Uy Al AL I Ckl’kZ
Qlﬁ == kaZQé + E Ck' k"Qk/Qk”’ (51) Kkl,k2 = 2kBT 2 (k + k ) l (60)
K’ +K"=k Y u'&iz’i
kq *k
Na 1"
where
uy 2
Ki, =kgT Saky (61)
c/v= i4\/L sink—7T sin 27 sin (k+ p)m Kk B 2a(ky ko) oy |
kP Nnfa?~ N~ N N Na k%,

% [Kr + %K¢<_ 2+ cos&T + Cogﬂ’)} . (52 Equations(58) and (59) together with the relations among
a N N e Tk andgy, Egs.(34), (43), and(57), form a system of
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FIG. 1. Damping functions of the slowest modes, i.e., real part FIG. 2. Real part of'j[Z] (solid line) and I’} [7] (dashed ling
of T[Z] (solid line) and I';[z] (dashed ling versusz, computed ~ Versusz from a full mode-coupling theory for parameters of set E
from MD for parameters of set B, =1, K,=0.3,a=2, T=0.4,m  (Same as that in Fig.)Jat N=8 and 64. The input effective disper-

=1. The top figure is for siz&l=8 and bottom figure foN=64. sion relation parameters!, c*, wy,a, andwy,, are given in Table

close equations, which can be solved in principle. However, ) o )
because of the singular naturezatwy, in Eq. (42), any ap- IS0 agrees with the approximation, £62), but with some-
proximation tol'y will destroy a subtle cancellation of the What different “vertex functions” replacing Eq$60) and

singularity, rendering the problem impossible to solve. ] . ) )
The damping functiod}{z] is the central function that a In order to obtain a numerical solution, besides the model

successful theory needs to be able to calculate. In Fig. 1 wdrametergmassm, lattice spacing, couplingsK, andK),
present examples of such functions determined from equilib?’€ &/So need the effective dispersion relation. We used MD
rium MD simulation in a microcanonical ensemble with pe- data for this purpose. It turns out that a two-parameter fit of
riodic boundary condition. A more correct comparison of the form

MD with mode-coupling theory should use an ensemble of

initial conditions distributed according to canonical weight. ~ _2c
This may be unimportant wheM is large. We computé&|z] @k=
from the ratio of two correlation functiongjodz]/gop Z]

=iz+Iz]. For small systems, there are a lot of peak strucharacterizes the effective dispersion relation very well,

o kw
Sin—
N

+ (wmax— §)Si¥ kT 63
a N

appears washed out for large systems. frequency ak=N/2.
We used a fast Fourier transform to solve the equations
V. SOLUTION OF MODE-COUPING THEORY iteratively. Given an initial{z], correlation function in fre-

guency domain is calculated by E@@4). Inverse transform
gives usg(t), which is used to calculate the discrete sum in
To make the problem tractable, we make a bold approxiggs. (58) and(59) to obtainu(t). We transform back to fre-
mation. Instead of Eq(43), we take quency domain for the next iteration.
_ Figure 2 is our theoretical calculation with parameters ex-
ulzl = ridzl. (62) actly at set E. This figure should be comparepd with the MD
This is equivalent to saw=~ w,. This appears justified for data in Fig. 1. We observe that the predicted results are too
the longitudinal modes at sufficiently low temperatures, butsmooth without much structure. The mode-coupling theory
problematic for the transverse mode,@ss linear in wave predicts a damping that is a factor of two larger for the lon-
numberq but w, is quadratic ing. We can consider the limit gitudinal modes and much too large for the transverse
of smallg. In such limit, the difference betwediy andI" is  modes. By adjusting the temperature to a lower valuee
dropped. Lepri's treatmeni9] is similar to the above ap- half for N=8 and a quarter foN=64), we obtain curves
proximation. We also note that in the work of Scheipers andvhich closely resemble the MD results. However, the mode-
Schirmacher for damping of anharmonic crysf@s], effec-  coupling theory still overestimates the value of transverse
tive cubic coupling is used instead of the “bare” coupling,damping. It is clear thak' is considerably smaller in actu-
Cyp,q- The standard operation of projecting the random forceally system, but our mode-coupling theory cannot produce a
onto bilinear formQ,Q, to get the mode-coupling equations small enoughK+.

A. Numerical solution at finite N
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0-20 » ‘ ' TABLE |. Parameters for mode-coupling equations.
N=8, T=0.2

013 1 Set E bare N=8 N=64 N=1024

~ 0.10 = 1 c 2 1.435 1.341 1.329

005 | ] ct 0 0.621 0.669 0.674

O 2 1.495 1.543 1.553

0.00 e o Omax 1.095 1.087 1.182 1.194
0.020 vo 2 0.7113 0.6333 0.6337
vy 0 -0.1060 -0.0221 -0.0076
vy -0.6 -0.1099 -0.1242 -0.1293
3 v3 0 0.6362 0.8965 0.9312
va 0 -0.0424 -0.1346 -0.1469

interactions as perturbations, i.&/, and V@ are assumed
small. All the equilibrium averages are approximated by the

FIG. 3. Real part of"}[Z] (solid line) and ' [z] (dashed ling leading contribution from the perturbation,

versusz.from a full mode-coupling theory for parameters of set E ()= ((1=pH) (65)
but at different temperatur€. Other parameters are the same as in
Fig. 2. where(: - -)q is thermodynamical average with respect to the
non-interacting harmonic oscillatoggroduct of Gaussian in-
B. An effective Hamiltonian approach tegralg. Under the above approximation, we find

The results presented in Fig. 3 give us some hints that the o _
mode-coupling equations are essentially correct, but the pa- (Qkl* = B(Z)}kL)Z *
rameters of the model need to be adjusted. In fact, simple
perturbative expansion of the Hamiltonian cannot correctlyand the interaction parameters

o(V?), (66)

predict®; . According to MD resulta@;, <k, but the leading B (QlOLQL)
contribution from perturbation calculation should give the Vipg= > pig T (67)
bare frequencyy = wi k2. 21 XIQp X Qq %)
The adjusting of the parameters can be made more rigor- | u |
ous[39] with an introduction of an effective Hamiltonian, Ve = (QQpQy (69)
. 1 B(QL |>2<|Q PXIQL
H(P.Q) =7 2 (PEPHH+ (@)%QLQY) The actual form of thé is fitted according to Eq63). For
ozl V andV® we fit into a functional form
2 ViRt 2 Vg, -
epra=0 P b0 Viog= l [vo + 01 2+ 0202 + YD), (69)
=HO+H, (64) W
The form of the Hamiltonian is dictated by symmetry. Trans- V{(?;))q— N [v3+ 0,0¢+y2+ )], (70)

lational invariance requires thiat-p+g=0(mod N). The sys-
tem is symmetric under reflection aboutaxis or x axis.
Thus the Hamiltonian should be invariant under the transfor-
mation Q; —-Qg or Q,—-Q',. In addition, Vkpq is sym-

metric under permutation gF andq, andV(3) is symmetric
under permutatlon of all three |nd|ces We also have

where z=sin(kzr/N), x=sin(pz/N), andy=sin(qw/N). The
values ofv, to vy, together withc and wy,,y are listed in

Table I. It is surprising that not only is the® term present,

but also is its magnitude comparable Yo The column
Cmarkedbare are the parameters corresponding to the bare
Vo -p-q~ Vkpq and similarly forV ¢ Although the origi-  Hamiltonian, Eq(44). The bare parameters are reached only
nal Hamiltonian does not havé® term such a term can be at very low temperatures, such @s0.002. Since we have
present. One of the reasons that such a term can be presenfastored out the leading size dependence, we expect the pa-
due to the nonanalytic behavior of the potentia#cause of rameters weakly depending on sile
the absolute valug |). Before presenting our results with the effective param-
We determine the parameters of the effective Hamil-eters, it is worth pointing out that the standard procedure of
tonian, @}, @, V, andV® by fitting them to the observed deriving mode-coupling equations gives identical result as
time-independent correlation functions from MD. In order to OUr approximation, Eq(62). The standard procedure is to
be able to carry out the calculation analytically, we treat theproject the random forcdg, = kak+Qk, onto a bilinear form
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of the basic variabl®,. Applying the general projection op- 020
erator, Eq(5), to our case, this bilinear projector is o5 / N=8
= 2 (fQf QJ><|QQ 2 E NQQ, (7D o0+ || /\ 1
i#],i<j ! l ! J \
— 0.05 - « / /\ g
wherei or j is a pair of indices, e.g.j=(k,u), andj is Pl P, s \\J\/\
(=k,u). In evaluating the four-point correlation functions, we 000, - 1‘0' — 20 I 1
have neglected the perturbation term. It turns out that the las  0.03", : : .
term projects out only the=0 component. Thus, the specific N=64
values ofN; are not needed. 002 | |
After applying projectorP, onto R, we neglect the dif-
ference between normal dynamie¥ and anomalous dy- =~ /\\
namics forR{(t), &£ We have 001 7 — /\ ]
—
T (1) = BREDRL(0)) = Be“PRUOI[PRL(0)]). 0 L S e R e e ]
0.0 0.1 0.2 0.3 0.4
(72) z
The mode-coupling equations are then, FIG. 4. Real part of"}[Z] (solid line) andT';[z] (dashed ling

@ versusz from a full mode-coupling theory for set E, using effective
=2 (K vadp (Vg (B) + qu)g!,(t)g (1), (73)  parameters given in Table I.

pra=k
dicts 94, ~0.00066 andy; ~0.000078, respectively. Mode-
ri=> Kéqg‘p‘)(t)gé(t), (74)  coupling theory with effective parameters still overestimates
pra=k the transverse damping by a factor of 2-3.

In Fig. 6, we show the damping of the mode in terms of

where the decay constany, which is defined by the exponential
_ 3| R Qla 2 v 2 decay ing(t) = cogo,t)e . The symbols are obtained from
I prax-px-gr. _ Z | __—PG.pg (759  MD simulation, while the curves are from the full mode-
pq 112 L2 ~1l~1 ’ . . .
2 1Qp QgD Bl wywy coupling theory with effective parameters. For MD dajg,
is obtained by a least-square fit to the amplitudes. For mode-
Re= R4\ Vacamas|* g G e e B ounc
PP QD T Bl Bpas | g

Pa w, with width abouty,. We observe that excellent agreement
between MD data and mode-coupling theory is obtained for

ve® the parallel component. The mode-coupling theory overesti-

—P=-4g,p.9

p®q

=3 - BIRLQLQ ) _ 18
T2 QD T B

(77

1.0

Note that the vertex couplindRQ,Qq) = 0% QQ,Qy) is pro- sl
portional to the three-point correlation independent of the ’ , It ‘ ]
specific form of random force. This version of mode- . 41 i ! ,ﬁ N , .
coupling equation need not have the limitation of small os- J i vy ‘ T
cillations and can be applied to high temperatures as well. —os L]

Figure 4 is a calculation of the real part bf{z] for k |
=1. Comparing with Figs. 2 and 3, we see that using effec- -1.0 i ‘ - —

tive parameters brings into much better agreement with the TANR
MD data. In fact, comparing to Fig. 1, most of the features %5} '[:| /| |/,
are reproduced, such as the locations and heights of the " [ oA .
peaks. The most important improvement is the ratio of par-s %° [} ! R (IR R R
allel to perpendicular damping. I T O O 1 Y Y
In Fig. 5, we compare the normalized dynamic correlation LN AR R Y /S WA
functions for sizeN=256 and the slowest mode=1. The ol YV SV oy Ve N W WY Y VY
frequencies of oscillations are slightly different in MD and 0 2000 ¢ 4000 6000
mode-coupling calculation, thus there are phase shifts at long
times. The longitudinal damping agrees with each other ex- FiG. 5. The normalized correlation functiog(t) (upper part
tremely well. A fit of the logarithm of amplitude@naxima  andgj (t) (lower par) on aN=256 system for data set E. The solid
and minima versus time for the MD data gives the decay curves are from full mode-coupling theory, while the dotted dashes
rate y; ~0.00064,y; ~0.000023, while mode-coupling pre- are from equilibrium molecular dynamics.
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10° : ; a\? 2
. K= 8(5) BCHZ(():LZ' (81)
10" oea
Py g B if we use the effective Hamiltonian. We also linearize the
g° A& dispersion relation so that“=c#p, c*=c' or c' are effective
10° | & o 1 sound velocities for the longitudinal and transverse modes.
&° A ‘ We shall refer to Eqq.78) and(79) as simple mode-coupling
=107 o _ theory and the finiteN version as the full mode-coupling
o® A theory.
=
107 (;/o A ' 1 D. Asymptotic analytic solution
P A
& & Assuming that the simplified mode-coupling equations
10° |7 4 1 represent the essence of the physics regarding the damping
o and time-dependent correlation functions, we now consider
10 J \ analytic solution to Eqg.78) and(79). First we notice some
1 10 100 100C constraints on the functions. Becausg#t) is a real function,

we must haver{z]' =1[-Z]. Sinceg;(0)=1, we must have
v(0)=K*/a, for v=| or L (assuming®=0). This implies

FIG. 6. The decay ratey for each modek for system sizeN . )
that the Fourier-Laplace transform must be integrable:

=1024. Circles{;{) and triangles(yif) are from molecular dynam-

ics by fitting the correlation function, while the continuous curves 1 (” K
are from a full mode-coupling theory for set E, using effective v(0) = —j Yz]dz=—. (82
parameters given in Table I. TJ - a

] Next, the largez behavior can be obtained by integrating by
mates the transverse mode damping by some constant factghrt few times, using the boundary conditiog€0)=1,
In any case, the slopes of the curves agree very well with thel(o)zo g"(0)=-®2, and g(t—=)=0. For simplicity, we
expected resultgto be discussed in the next subsecfiol  haye omitted the lattice momentum indgxand mode index

3/2 L 2
k™= and yjc k= I'or L, since it is true for anyyg. With these results, we find

To simplify the equations further, we consider the large
size limit. Since the large size asymptotic behavior is the mla 1
most interesting, such limiting results are justified. We thus =+ 3f dg(@? + @3) +O<§>, (83
consider the limit ofp— 0 and keep only leading contribu- laz  2mz"J
tions in lattice momentunp=27k/(Na). In this limit the |\ here for!, gt andg? are allg*, while for »*, it is g and
threg l;ern(:( f.ur:jctlonds(;{jl’k2 t;ecor_ne ;onstznts. Ln e;d@uon, g*. We can establish that
we define ak-independent function by taking the limitp o
—0. The leading-dependence ity is k2. When this term is vz] = (i2)%  v*[2] = const, (84)
factored out, we expect thaj becomes independent kfin  in the limit of small K*. We proceed as follows: first we
the limit of largeN and smallp. With these simplification g5sume th@L[z]:Vé or VL(t)zz,,é(s(t), We then derive an
and approximation, and converting the discrete summation t@xpression for/(t) and »*(t), and show that indeed" (1)

Lo % ) K 7la o )
C. Large N limit Uz :f w(t)e 2d= — dqf gé(t)gé(t)e"“dt
0 27 ) 71 0
K

integral, we have in the limit of large sizes: approaches @-function in a proper limit. When[z] is a
1 (" constant, the inverse Fourier transform for the correlation
V(t) = o dg (K'gy ()2 +K®gyt)?),  (78)  functiong[z] can be performed exactly, to give the transverse
TJ ~mla correlation function as
L (mla Lyt E_) jot-{1/2]0 1t }( _5_) —iot-[1/2]T Tt
v=5-|  dadwgw. (79 m"z(“zia e ot o
—mla (85)
where where Ty =v5 0%, and o= \s’cﬂqz—l‘qﬁM%ch. We have
. a5Kr2 @ L 5 ? Iinearizeq the dispe.rsio_n relatiots,~ c*qg. We only Iolok 2at
= m, K¥=0, K = m (80) the dominant term in time dependencgz&t). For g (1), _
since largeq-mode decays rapidly, we ignore the term with
if we use the perturbation expansion Hamiltonian, or amplitude proportional tay, and also drop the oscillatory
B 2 s term and approximateg;(t)zz(1/2)e‘rét. After integrating
Kl = 4<§) Yo ke = 36( f‘) V3 overq (we also extend the limit as frones-to =), we obtain
2) Bct¥ 2) Bc¥’ the leadingt dependence, as
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K”
sy o
V(t) 2

(86)

1
VWVét.

PHYSICAL REVIEW E70, 021204(2004)

1

vi(t) = K—5(t).

P (%9

. . . . . 1
If the oscillatory terms are kept, they only contribute an ex-This allows us to identify the constanty =;K*/|c'-c*|.

ponentially small termg©)¥*; and theq? terms give a
contribution that decays much faster, ta¥?. The contribu-

The condition foro—c is the same asy; —0 or K+ —0.
Since K+/K'=2(ct/c")? [cf., Eq. (80)], small K- also im-

. . H 1
tion from K@ term can be neglected, because it decays aBli€s smallc™.

t™23[due to Eq(91)]. But this term does provide a crossover
from z7%3 for intermediatez to the asymptoti@ */2 for very
small z. The Fourier-Laplace transform gives

[
VH[Z] ~ ﬁ - :Il - b(iZ)_llz.
4 Viyyz

(87)

We now get an expression for the longitudinal correlation

function. Formally, it is given by the inverse transform
1(*  -iz-Ty7]

— e?dz,
2m)_.. 7= clo? ~izly[Z]

gy = (88)
where F‘('][z]:qzv”[z]:quly"ﬁ, b:%K”/V’Tg. The dominant
contribution is fromz when the denominator is close to zero.

The integral can be approximately estimated by the residuev L

theorem. By location the poles
2 - 2P - \iz b =0,

we obtain the dispersion relation f%(t). In the limit of
small g, we find

(89)

z=clg+iyg®?, (90)
where y,=(v2/16)K!/\c'v} . Therefore,
gy(H) = e 10 cogdlqt). (91)

Similarly with the dispersion relation for the transverse
mode,z=c'q+(1/2)ivy0?%, we can compute

KJ_
vt =—
T

KL [ 1 (e'(C” - ch22ugt 4 o +ci)2/2vgt)
8yt .

(92)

f dg e70d” V2w e cogdgticogc qt)
0

We have neglected thg, term. Sincdc'-c*| is smaller than
c'+ct, we drop the second term. We symmetrically exten
the function. Note that" (t) can be casted into the functional
form

1 O_e—olt (CH _ CL)Z
f,)=-\—F—, =, 93
O=NZTW 77 28 93
which has the property that
j f()dt=1, forall o>0. (94)

Thusf(t) behaves as a-function aso— o°:

Although the above derivation suggests that the result is
valid only for the special limit. But in fact, this is also the
asymptotic result in the limiz— 0. To show this, we note
that the asymptotic behavior is picked up by the scaling
lim, _oA%\z]=1[z]. If this is true, theny[z]«Zz°. This
scaling limit coincides with the limit oK+ — 0.

E. Numerical solution of the simple theory

For the simple mode-coupling theory that we have already
taken the largeN limit, we can also apply the fast Fourier
transform method. However, we find that a direct numerical
integration in frequency space is much more accurate. For
example,v'[z] is expressed as

KL (™ - 1
[z]= o 3Lc de do’ 2 Fi(w,w’)<P—i(z_ ——
+775(z—w—w’)>, (96)
where P stands for Cauchy principal value and
Fio,0)= f:a g'(q,0)g*(g,")dq, (97)
g (G) = e v Ll (99

w2 _ (CH,L)Zq2 _ iwv”'i[w]qz '

When the linear approximation is made to the dispersion
relations, the integral ovay can be performed analytically.
We only need to do a 2D integral overand w’. The prin-
cipal value integral is taken care by locating exactly the sin-
gularity. Since the integration routine needs a smooth func-
tion 1{z], we fit the results by a Padé approximatifin
variableiz or (iz)¥3]. The procedure is iterated several times
for convergence. This is programmed MATHEMATICA . It
turns out that it is essential to have more than double preci-
sion accuracy in the integration routine in order for the sin-

goular integrals to properly converge. Some results of this

calculation are already presented in R&fl].

In Fig. 7, we compare three levels of approximations of
v#[z]: the simple mode-coupling theory, the full theory com-
puted on N=1024 by v*{z]=I"}[z]/[27/(Na)]?>, and the
asymptotic result of[z]=3K"*(1/|c'-c*|+1/|c'+c']), and
Eq. (87). Noticeable differences are seen between full theory
and simplified. This is partly due to the fact that we are
comparing a finiteN with an infinite N result. We also note
that the asymptotic slope of -1/2 fof[z] is approached
rather slowly.

Figure 8 shows a stronger crossover effect from slope of
1/3 (corresponding tac<N?5, to be discussed lateto that
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the three parameters that characterize the solution, we can
pick two as independent. The “shapes” of the solutions are
all the same folK/c?=const. Without loss of generality, we
can fixK=1. Next, we consider a general scaling solution of
the form

v(AzZ; K, \ec, \aa) = N %u(z;K,c,a). (100

Substituting this scaling form into E¢Q6), by requiring that
the result must be consistent, we obtain the following condi-

tions:
204 5-1=0, (101
Ac+Ag-1=0, (102
1-Aq=4, (103
Ay+Ag=0, (104)

FIG. 7. Real part of/[z] (top) and »*[z] (bottom) for data set
E. The smooth curves are from simple mode-coupling theory, thevhere A, is scaling exponent associated with integration
(red) curves with spikes are computed from full theory Mt  variableq, g— A%ag. A unique solution to the set of linear
=1024, while the straight, dashed lines are analytic asymptotiequations is obtainedy=1/3, A;=1/3, A,=-2/3, andA,
results. =2/3.Since Eq(100) is (approximately valid for anyx, we

. . can choose\=1/z. This scaling solution implies that
of the true asymptotic law of 1/2. This set of curves corre- 9 P

sponds to data set J. n(z;K,c,a) = 2 Y3(1:K,clz/3, 7%a). (105)

F. Scaling solution of the simple theory Power-law behavioz 3 is obtained in the limit of smalt,
erelatively largec, and smalla, if »(1,K,0,0) is finite. The
crosggver to other behavior occurs at lamec® and z
~a e

A simple dimension analysis also leads to t¥?® factor.
lI)_)(lat the dimension of length and time lkeand T, respec-
tively. Then the dimensions of relevant quantities gzg
=T, [c]=LTY, [a]=L, [»]=L?T™%, and[K]=L3T"2. From
the five quantities, we can construct three dimensionless

We now look at some of the scaling properties that ar
implied from Egs.(78) and (79). First, we consider the
simple case oK=K'=K*, K®=0, andc=c'=c*. In this
case the two equations degenerate into one equation given
Lepri [9]. By measuring frequency in terms of(i.e., con-
sider variablez/c) we can scale awag, thus the following
equation is an exact scaling

¥(z;K,c,a) = cv(Zc;K/c?, 1,a), (99  variables
wherev is a function ofz with parameter¥, c, anda that we v c K
have written out explicitly. This equation tells us that out of =55 =7 l3=—3. (106)
7V za ac?
15.0 . . . .
If there is any relation between tHé&’s, it must be in the
form I1,=f(Il,, 1) (Buckingham Pi theorerf4Q]), or
za K
[z]= 2‘1’3K2’3f<—, —Cz) : (107)
10.0 ca
wheref is an arbitrary, dimensionless function. This result,
s of course, is consistent with E¢100). This also suggests
o 00 ‘ \ that the scaling is not approximate, but an exact result.
0 107 107 10° Figure 9 is a test of the above scaling by numerical solu-
50 - z tions. For smallz, the power-lawz'® is verified to high
accuracy. Since this scaling is exact, the deviations are due
purely to numerical errors in solving the equations. The case
of the coupled longitudinal and transverse equations is some-
. — what difficult to analyze. We can require a very general scal-
%%.0 05 1.0 15 20 ingofthe form
z PNz AKKI AR Al et e \dag)
FIG. 8. Real part o#/[Z] (solid line) and v[z] (dashed lingfor Az K KL oot
~ z;K',K+,c',c+,a), 108
data set J(K'=1.532, K1=0.719, andK®=2.776. The insert d ) (108
shows the effective exponentd+n v/d In z and similarly for the perpendicular component. If we require
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10° ‘ ‘ ‘ \ \ ity. In analogous to electric circuit, the heat conductance re-
lates the temperature gradient to energy curngraurier
E law),

=~ k. (114

10 ‘ ‘ ‘ ; : The quantityJ(t) is related to energy current ky=laN. The
central quantity that we compute in equilibrium and nonequi-
5 10 e ] librium heat conduction is th@otal) heat currend. Since the
9\5 heat current is a macroscopic concept determined by the con-
‘g Son, servation of(interna) energy, a microscopic version of it is

5 Wk \“'”‘\\ E not unique. The current expression must satisfy the energy
T, continuity equation in the long-wave limit. We derive an ex-
oL L . Ty pression starting frond=3; d(r;h;)/dt, where the local en-

10 10 10 10 ergy per particle is h=zK/[(Ar;_y|-a)?+(Ar;|-a)?]
+K, cos ¢i+pi2/(2m). By regrouping some of the terms us-
FIG. 9. Real part(top) and imaginary part(bottom) of  ing translational invariance, we arrive at the heat current per

MBu(Az; K\, \"#%) versusz for K=c=a=1 and\=1 (solid  particle:
line), 1/8 (open circley and 8(crosses

for consistency of scaling for both longitudinal and trans- MJi= = AnlPi+ piey) - GO]= Arisal (P + pia) - G - 1))
verse components, we find that the only scaling solution is +Ariy[pi-HGi-2,i-1i-1)]

the symmetric solution, i.e., the scaling discussed above with +Ar[p; - H(i +1,i +1,)]+ph;, (115
identical longitudinal and transverse scaling exponents. If we

abandon the exact scaling for the transverse component an

=1 |- ) ii.k= . :
look only at longitudinal component, we can require that wdhere G(')_4K'_(|Ar'| a)n_,, H(' ') !k)_K‘f’(n'+nk cos ¢;)/
|Ary/, n; is a unit vector in direction ofAr;=r;,;—r;. The

0, =204 1, (109  total heat current irx direction,J=3; j,; is the quantity ap-
pearing in the Green-Kubo formula. It is equal to the mac-
o =1-Ax—Ag, (110 roscopic heat current densifgnergy per unit area per unit
time) integrated over a volume.
Acr=1-A,. (1121 For theoretical analysis, we need to expréss terms of

) ) ) the dynamical variableB, andQ,. A general expression will
As before we can require that there is no scaling for theye rather complicated. Again as in mode-coupling approach,
coupling constanK" without loss of generalityi.e., Axi=0),  we consider small oscillation expansions and only the lead-

the above equations imply a relation ing contributions. Neglecting the nonlinear contribution of
3 .
28+5, =1. (112 O(Qy, we obtain
In particular, if 6, =0, we must havey=1/2 andA.1=1/2. J o
This is consistent with the fact that the scaling regionsof J=> b{QLP~, bf= iw{(‘L, (116
=1/2 isobtained for smalt*. ko a(@)
A complete and clear scaling picture is still lacking. From Na

the numerical solution, we observe that besides well-
characterized scaling regimes, there are also plenty of i”te(/vherew{j is the bare dispersion relation given by E45)
mediate regions and crossovers. For very largand small 314 (46). More general expression in a quantum-mechanical
K*, or smallc™ and largeK, the behavior of the solutions  framework including the cubic terms is given in R§d2].
are difficult to characterize. An approximation for the correlation function of the current
can be obtained, again using a dynamic mean-field approxi-
mation, as

In this section, we make the connection of the damping of
modes with thermal conduction. The starting point is the

VI. GREEN-KUBO FORMULA

Green-Kubo formula for transport coefficient: J(1I0) = kE b PHUQE(H) QX (0))(PL(t) PA(0))
= kBleaN fo (I(1JI0))dt. (113 +(QK(HPL(0))%. (117

For the special case of heat conduction in a 1D chain, it iS§he above expression can be further simplified by the ap-
better to callx heat conductance rather than heat conductivproximationP =Qf =~ w{ Q. We find
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107 10° 10' 10° 10° 10*
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410"
L ¢
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cCl
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< 107
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FIG. 10. The Green-Kubo integrand from Mircles and FIG. 11. The finite lattice conductance defined by Green-Kubo

mode-coupling theorycurve) for set E with sizeN=1024. The formula at parameter set E. Solid circles are from full mode-
straight has a slope -2/3. The insert shows the same data ongupling theory; the triangles are from molecular dynamics with

linear scale. periodic boundary condition; the straight lines have slope of 1/2.
by |2 , verged value from MD. But the results are consistent with a
A0 => sor| %O N Taw.
bou k The relation of the mode-coupling theory with the results
_aN(c)? mco§(~” Heidpo N(C”)zt—l/(z—au) of nonequilibrium situation of low- and high-temperature
2 p 2 : - . -
2B |, @ rap 8 heat-baths at the ends is not clear cut. The standard assump

tion is that the correlation should be cut off by a time scale of
(1189  orderN due to the interaction with the heat baths. Finite size
result is obtained by integrating the power-law decay to a
We have dropped the contribution from the perpendiculatime of O(N). This gives us the asymptotic behavior for the
component because it decays much faglee to an extr@’  conductance at larghl as
factor in the integrand We compare the mode-coupling re-
sult of Green-Kubo integrand with that of MD in Fig. 10. We
have used Eq.117) for the mode-coupling calculation. Note k<N a=1-——. (120
that the correlation function&Q(t)Q(0)"), (P(t)P(0)"), and 24
(Q(t)P(0)") are simply related in frequency domain through
Eg. (32). The agreement is reasonable with the largest deviaSince we findg=1/2 for smallK*, the thermal conduction
tion about a factor of 2. The asymptotic behaviort@3is  diverges adN*3. WhenK® is sufficiently large, we observe
consistent with both sets of results. N5,
The heat conductance on a finite lattice is sensitive to
boundary conditions. Clearly, in the mode-coupling formula-
tion, we have used periodic boundary condition. If we inte- VII. NONEQUILIBRIUM MD STUDY
grate over time from O tee first on the second line of Eq.
(118, we obtainko fdp/y,. On a finite lattice we have a
lower momentum cutoff, 2/(Na). The size dependence of  We note that the interaction potential is not smooth at the

A. MD simulation details

the conductance on finite lattice is then point when two particles overlap. This can cause numerical
instability. Thus, we replaced the original potential with a
Ky < N9, (119  modified one,

Since §,=1/2, k= JYN. This result is in agreement with that
of Deutsch and Narayan for a modghe random collision Ar=|ri;1—ri| — Ar’ =Ar + Arre (121
mode) where transverse motion is taken into account only Fre

stochastically{16].
In Fig. 11, the mode-coupling result &, is compared which smooths out the discontinuous derivativesAat0

with equilibrium MD result with periodic boundary condi- with a small correction of orde¢?. In addition to replacing
tions. Excellent 1/2 power is observed for the mode-the spring potential b)éK,(Ar’—a)z, we also replace the
coupling result. We found it is rather difficult to get con- cosine term by
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B Ar|—]_ 'AI’, (122) 0.50 T T T T

so that the value is well defined for all positionsIn actual
simulation, we have used very smal- 10 to 10 so that

its effect should be comparable to error caused by finite time-
steph. We also used largeas a way of simulating a slightly
different model to study the robustness of the results. We o0.40
solve the system of equatiofiél]

0.45

fi— &pi, if 1 <Ny;
fi, if N=N,,>i=Ny; (123 0.35
fi = &upi, if i =N=Ny;

do; _
dt

wheref; is the total force acting on theth particle,& andé&y

0.30 1. 1 L Il

obey the equation 0.0 0.2 0.4 0.6 0.8 1.0
iIN
dép_ 1 1 p?
dt’ = @ -1 +m2 EI ) (124 FIG. 12. Temperature ath particle,T; versus scaled position,
BlLHNw |

i/N, for data set E witiN=64 (plus), 256 (dash ling, and 1024

whereT, andT,, are the temperatures of the two heat bathgsolid line).
at the ends. The summation is over the particles belonging t . e : .
the heat bath. We have used four particles for the Noséff—ealcst I,?hvé EPnl?tnfgdeecllf\l/Sittr?t?gfls?/oetrirglr?:o%isoidv&gsifjgﬂ&
Hoover heat baths, with extra first two and last two particles_ "’ . . )
at fixed positions. The coupling parameeis taken to be 1. and the result is also consistent with the 1/3 power law.

For the central part, we used a second-order symplectic al- At low temperatures for sets : a_nd C, we appear to ob-
gorithm (or equivalently, the velocity Verlet algorithm serve exponent of 0.4. What is particularly interesting for set

while for the heat bath, we used a simple difference schem Is that the cha'ir.1 ‘? com_pressed to an average Qistgnce of
accurate to second order imfor & .5 from the equilibrium distance of 2. The behavior is not

Although the total energyHamiltonian is no longer a changed much comparing to the uncompressed chain. Sets G
conserved quantity when the heat bath is introduced, th nd L represent very large angular coupliig We note that

above equation still has a conserved quantity of similar char- ¢ corresponds to a situation that qullhbngm cannot be
acter: established. AX , becomes larger, the equilibration becomes

increasingly difficult. In Ref[31] we reported a logarithmic
behavior forK ,=1 (set B. This logarithmic behavior does

1 t
H(p.g) + > NWkBTx(E®2§>2<+J §xdt>- (129 not maintain wherK, is increased further. The exponemt
x=L,H 0

This quantity can be used to monitor the stability of the
algorithm. Since we run for very long time steps of  10°
10°-10° it is essential that the algorithm is stable over an
extended period of time. Even with a symplectic algorithm,
stability is not guaranteed by merely taking sniah-107%).

Thus, we adjusted the conserved quantity, B@®5), to its

starting value after certain number of steps.

iN

B. Heat conductance results

In Fig. 12, we observe that good temperature profiles are
established. Due to relatively large temperature difference

between low- and high-temperature heat baths, and perhag koo -

also due to the nature of heat baths, the profile is not linear w2 e

However, the scaling witiN is approximately obeyed. L L S 2/ L J,
In addition to the thermal conductance results reported in 10 10 \ 10 10

Ref.[31], Fig. 13 gives additional data for variety of param-
eters. One of the aims of these additional runs is to check the £ 13, jN versusN for different parameteréK,,, T, , Ty, ). set
robustness of the 1/3 power law for thermal conductance. Ig: (Kg, T, Th,€)=(0.1,0.2,0.4,D the chain is compressed to have
is found in Ref[31] for set E exponentv=0.334+0.003. an average distance between partidje1.5; set G:(10, 0.2, 0.4,
This is an excellent confirmation of the mode-couplingoy; set I: (0.1, 0.3, 0.5, 0.2 set K: (0.5, 1.2, 2, 0.% set L: (25, 1,
theory. We note that at parameter 8gtthe 1/3 law is not 1.5, 0.2. All of the sets havé(,=1, massn=1, and lattice constant
destroyed by introducing large Thus we believe that the a=2. The number indicates the slope of least-squares fit.

021204-14



MODE-COUPLING THEORY AND MOLECULAR DYNAMICS.. PHYSICAL REVIEW E 70, 021204(2004)

for sets L and G is closed to 1/2. This may be related theVilD and mode-coupling theory on memory kernel, decay of
results of disordered harmonic chain. the modes, the time-dependent correlation functions, Green-
Kubo integrand, and finally the finite-size conductance, we
have strong evidence that the mode-coupling theory is cor-
rect, and it captures the essential features of the system.
Lepri et al. introduced mode-coupling theory into the e have used parameter set E as the main data set for
problem of heat conduction in low-dimensional systems tg"°mparison. The reason for choosing this particular set of
interpret the MD results qualitatively. We have developed thP@rameters is that it gives the cleanest power-law behavior.
theory further by introducing a “full theory” and effective Other parameters will be either qualitatively s!m|lar, or
parameters for the theory. The full theory is solved numeri-crossovers will be observed. In fact mode-cou;()lmg theory
cally. At this level of approximation, we find that the mode- Naturally predicts crossover due to the presendé dfterm.
coupling theory gives excellent prediction on a quantitative?Vhen this term is dominant, or the tranzs/\éerse effect can be
level. The longitudinal dampingdecay ratg 4] agrees with ~N€glected, we should see behaviorof N> Thus we feel
MD data within a few percent of deviation. The mode- that the controversy of the result ?f Lei al. [6] and that
coupling theory somewhat overestimated the transversgf Narayan and Ramaswarriy <N °) [15] can be recon-

VIIl. CONCLUSION

damping - by a factor of two to three. The full theory Ciled within the current mode-coupling theory.

assumes that the damping functionemory kernelI',[Z] is
an explicit function of two variablek and z. In a simple
mode-coupling theory, we assuniig[z]=[2=k/(Na)]?{z],
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